Epizoon microalgae of the cultivated mollusk Мytilus galloprovincialis Lam. 1819, phytoplankton, hydrological and hydrochemical characteristics in the mussel-and-oyster farm area (Sevastopol, Black Sea)

Main Article Content

L. I. Ryabushko

http://orcid.org/0000-0003-0443-9929

https://elibrary.ru/author_items.asp?id=755375

N. V. Pospelova

http://orcid.org/0000-0002-3165-2090

https://elibrary.ru/author_items.asp?id=744602

D. S. Balycheva

https://elibrary.ru/author_items.asp?id=744972

N. P. Kovrigina

http://orcid.org/0000-0002-6734-8285

https://elibrary.ru/author_items.asp?id=861713

O. A. Troshchenko

https://elibrary.ru/author_items.asp?id=454440

S. V. Kapranov

https://elibrary.ru/author_items.asp?id=149696

Abstract

In mollusk cultivation areas large amount of biomass and metabolites is accumulated. For this reason, biological monitoring in the farming areas, which includes study of microalgae as environmental quality indicators, is of considerable importance. Samples of mussels harvested from collectors at 6 m depth over the period February 2015 – March 2016 have been utilized for studying epizoon microalgae residing on mollusk shells. At the same time, sea water at depths of 0 and 6 m was sampled for determining phytoplankton and hydrochemical parameters of environment in the mussel-and-oyster farm area. Dissolved oxygen, biological oxygen demand after five days of incubation in the dark (BOD5), alkaline permanganate oxidizability, silicates, organic and inorganic forms of nitrogen and phosphorus have been quantified in the water samples using conventional methods. In the epizoon of the mussel shells, 108 taxa of microalgae of four phyla have been identified: 3 species of Сyanoprokaryota, 6 of Dinophyta, 6 of Haptophyta and 93 of Bacillariophyta. The maximum values of the species richness (26) and abundance of microalgae were observed in February (74,78·103 cells·cm-2, t = 9,7 °C) and April 2015 (62,0·103 cells·cm-2, t = 10,3 °C), as well as in January 2016 (65,1·103 cells·cm-2, t = 9,5 °C). The highest biomass was registered in August (0,272 mg·cm-2, t = 25,5 °C). The main contribution to the total abundance was made by the diatoms Tabularia fasciculata while Navicula ramosissima, and cyanobacteria were prevalent in the total biomass. In phytoplankton at the depths of 0 and 6 m, 135 taxa belonging to eight phyla have been found: 2 species of Cyanoprokaryota, 47 of Acillariophyta, 57 of Inophyta, 17 of Haptophyta, 5 of Chlorophyta, 2 of Euglenophyta, 3 of Cryptophyta and 2 of Chrysophyta. The genus Chaetoceros dominated by the number of diatoms species (18). In terms of abundance and biomass, the dinoflagellate Prorocentrum micans and haptophyte Emiliania huxleyi were dominant. The maximum abundance (370·107 cells·m-3) and biomass (7560 mg·m-3) of the phytoplankton were observed in spring and autumn. In total, 213 of microalgae taxa have been identified in the phytoplankton and mussel shell epizoon, with 30 ones being common for both. Furthermore, 26 potentially toxic species and 24 indicator species have been determined, among which 26 ones are betamesosaprobionts, the indicators of moderate level of water pollution. Thermohaline characteristics of water in the mollusk farm area did not exceed those of the long-term observations. At all horizons, the oxygen content was at the level of 93–125 % of saturation. The sea water oxidizability did not exceed the maximum permissible level established by fishery standards. The concentration of nutrients was high with a large fluctuation range, which indicates anthropogenic impact on the water area. The values of the total inorganic nitrogen-to-phosphorus and silicon-to-phosphorus ratios suggested nitrogen and silicon limitations for the microalgae community development from July to December. The mussel epizoon microalgae abundance strongly correlated with water temperature and dissolved oxygen, and a strong correlation of the biomass with inorganic phosphorus was observed, too. Moderate correlations were also found with inorganic phosphorus and organic nitrogen. For the phytoplankton, moderate correlations of abundance with hydrological and hydrochemical characteristics were identified: with nitrates in the surface layer and with temperature, dissolved oxygen, and organic nitrogen in the subsurface water layer. The phytoplankton biomass moderately correlated with the silicate concentration. The hydrological and hydrochemical structure of sea water, especially in the mollusk farming areas, affected species composition and quantitative characteristics of planktonic and benthic microalgae communities.

Article Details

RyabushkoL. I., PospelovaN. V., BalychevaD. S., KovriginaN. P., TroshchenkoO. A., KapranovS. V. Epizoon microalgae of the cultivated mollusk Мytilus galloprovincialis Lam. 1819, phytoplankton, hydrological and hydrochemical characteristics in the mussel-and-oyster farm area (Sevastopol, Black Sea). Marine Biological Journal, 2017, vol. 2, no. 4, pp. 67-83. doi: 10.21072/mbj.2017.02.4.07
Keywords:
phytoplankton, epizoon microalgae, hydrochemical characteristics, mussel-and-oyster farm, Black Sea
Section
Scientific communications

References

1. Баринова С. С., Медведева Л. А., Анисимова О. В. Биоразнообразие водорослей-индикаторов окружающей среды. Тель-Авив, 2006. 498 с. [Barinova S. S., Medvedeva L. A., Anisimova O. V. Bioraznoobrazie vodoroslei-indikatorov okruzhayushchei sredy. Tel’-Aviv, 2006, 498 p. (in Russ.)].

2. Иванов В. Н., Холодов В. И., Сеничева М. И., Пиркова А. В., Булатов К. В. Биология культивируемых мидий. Киев : Наукова думка, 1989. 100 с. [Ivanov V. N., Kholodov V. I., Senicheva M. I., Pirkova А. V., Bulatov K. V. Biologiya kul’tiviruemykh midii. Kiev: Naukova dumka, 1989, 100 p. (in Russ.)].

3. Куфтаркова Е. А., Немировский М. С., Родионова Н. Ю. Гидрохимический режим района экспериментальной мидиевой фермы (рейд Севастополя, Чёрное море) // Экология моря. 2002. Вып. 59. C. 61–65. [Kuftarkova E. A., Nemirovsky M. S., Rodionova N. Yu. Hydrochemical regime of the region of the experimental mussel farm (the outer harbor of Sevastopol, the Black Sea). Ekologiya morya, 2002, iss. 59, pp. 61–65. (in Russ.)].

4. Лях А. М., Брянцева Ю. В. Компьютерная программа для расчёта основных параметров фитопланктона // Экология моря. 2001. Вып. 58. C. 87–90. [Lyakh A. M., Bryantseva Yu. V. Computer’s program for the calculation of basic phytoplankton parameters. Ekologiya morya, 2001, iss. 58, pp. 87–90. (in Russ.)].

5. Макрушин А. В. Биологический анализ качества вод. Ленинград, 1974. 60 с. [Makrushin A. V. Biologicheskii analiz kachestva vod. Leningrad, 1974, 60 p. (in Russ.)].

6. Марикультура мидий на Чёрном море / под ред. В. Н. Иванова. Севастополь : ЭКОСИ-Гидрофизика, 2007. 314 с. [Marikul’tura midii na Chernom more / V. N. Ivanov (Ed.). Sevastopol: EKOSI-Gidrofizika, 2007, 314 p. (in Russ.)].

7. Методы гидрохимических исследований основных гидрохимических элементов. Москва : ВНИРО, 1988. 120 с. [Metody gidrokhimicheskikh issledovanii osnovnykh gidrokhimicheskikh elementov. Moscow: VNIRO, 1988, 120 p. (in Russ.)].

8. Паутова Л. А., Микаэлян А. С., Силкин В. А. Структура планктонных фитоценозов шельфовых вод северо-восточной части Чёрного моря в период массового развития Emiliania huxleyi в 2002–2005 гг. // Океанология. 2007. Т. 47, № 3. С. 408–417. [Pautova L. A., Mikaelyan A. S., Silkin V. A. Structure of plankton phytocoenoses in the shelf waters of the northeastern Black Sea during the Emiliania huxleyi bloom in 2002–2005. Okeanologiya, 2007, vol. 47, no. 3, pp. 408–417. (in Russ.)].

9. Поспелова Н. В., Балычева Д. С., Рябушко Л. И. Микроводоросли в спектре питания культивируемых мидий (Крым, Чёрное море) // Труды V Междунар. науч.-практ. конф. «Морские исследования и образование (MARESEDU–2016)». Москва : Феория, 2016. С. 434–438. [Pospelova N. V., Balycheva D. S., Ryabushko L. I. Mikrovodorosli v spektre pitaniya kul’tiviruyemykh midii (Krym, Chernoe more). In: Trudy V Mezhdunar. nauch.-prakt. konf. “Morskie issledovaniya i obrazovanie (MARESEDU–2016)”. Moscow: Feoriya, 2016, pp. 434–438. (in Russ.)].

10. Пропп М. В., Пропп Л. Н. Гидрохимические основы процесса первичного продуцирования в прибрежном районе Японского моря // Биология моря. 1981. № 1. С. 29–38. [Propp M. V., Propp L. N. Gydrohimicheskie osnovy protcessa pervichnogo produtsirovaniya v pribrezhnom rayone Yaponskogo morya. Biologiya morya, 1981, no. 1, pp. 29–38. (in Russ.)].

11. Рябушко Л. И. Диатомовые водоросли верхней сублиторали северо-западной части Японского моря : автореф. дис. ... канд. биол. наук : 03. 00.18. Севастополь, 1986. 24 с. [Ryabushko L. I. Diatomovye vodorosli verkhnei sublitorali severo-zapadnoi chasti Yaponskogo morya: аvtoref. dis. ... kand. biol. nauk: 03.00.18. Sevastopol, 1986, 24 p. (in Russ.)].

12. Рябушко Л. И. Потенциально опасные микроводоросли Азово-Черноморского бассейна. Севастополь: ЭКОСИ-Гидрофизика, 2003. 288 с. [Ryabushko L. I. Potentially harmful microalgae of the Azov – Black Sea basin. Sevastopol: EKOSI-Gidrofizica, 2003, 288 p. (in Russ.)].

13. Рябушко Л. И. Микрофитобентос Чёрного моря. Севастополь : ЭКОСИ-Гидрофизика, 2013. 416 с. [Ryabushko L. I. Microphytobenthos of the Black Sea. Sevastopol: EKOSI-Gidrofizica, 2013, 416 p. (in Russ.)].

14. Рябушко Л. И., Балычева Д. С., Козинцев А. Ф., Рябушко В. И. Диатомовые водоросли эпизоона мидии Mytilus galloprovincialis Lam. в марихозяйствах крымского прибрежья (Чёрное море) // Вода: химия и экология. 2017. № 6. С. 52–64. [Ryabushko L. I., Balycheva D. S., Kozintsev A. F., Ryabushko V. I. Epizoon diatoms of the mussel Mytilus galloprovincialis Lam. in marinefarms in the Crimean coastal waters (the Black Sea). Voda: khimiya i ekologiya, 2017, no. 6, pp. 52–64. (in Russ.)].

15. Силкин В. А., Паутова Л. А., Лифанчук А. В., Фёдоров А. В. Морфофизиологические стратегии фитопланктонных сообществ [Электронный ресурс] // Вопросы современной альгологии. 2015. № 1 (8). Режим доступа: http://algology.ru/651. [дата обращения: 06.12.2017]. [Silkin V. A., Pautova L. A., Lifanchuk A. V., Fedorov A. V. Morphological and physiological strategies of phytoplankton communities. Voprosy sovremennoi al’gologii, 2015, no. 1 (8). Available at: http://algology.ru/651. [accessed 06.12.2017]. (in Russ.)].

16. Смирнова Л. Л., Рябушко В. И., Рябушко Л. И., Бабич И. И. Влияние концентрации биогенных элементов на сообщества микроводорослей прибрежного мелководья Чёрного моря // Альгология. 1999. T. 9, № 3. C. 32–42. [Smirnova L. L., Ryabushko V. I., Ryabushko L. I., Babich I. I. Influence of concentration of biogen elements on the microalgae communities of the Black Sea shallow-water. Al’gologiya, 1999, vol. 9, no. 3, pp. 32–42. (in Russ.)].

17. Холодов В. И., Пиркова А. В., Ладыгина Л. В. Выращивание мидий и устриц в Чёрном море. Воронеж: ООО «Издат-Принт», 2017. 508 с. [Kholodov V. I., Pirkova A. V., Ladygina L. V. Vyrashchivanie midii i ustrits v Chernom more. Voronezh: OOO “Izdat-Print”, 2017, 508 p. (in Russ.)].

18. Brzezinski M. A. The Si:C:N ratio of marine diatoms: interspecific variability and the effect of some environmental variables. Journal of Phycology, 1985, vol. 21, no. 3, pp. 347–357. doi: 10.1111/j.0022-3646.1985.00347.x.

19. Castenholz R. W. The effect of grazing on marine littoral diatom populations. Ecology, 1961, vol. 42, no. 4, pp. 783–794. doi: 10.2307/1933507.

20. Medlin L. K. Effects of grazers on epiphytic diatom communities. In: Proceedings of the 6th Symp. on Recent and Fossil Diatoms / R. Ross (Ed.). Koenigstein, Germany: Koeltz Sci. Books, 1981, pp. 399–412.

21. Redfield A. C. On the Proportions of Organic Derivatives in Sea Water and Their Relation to the Composition of Plankton. In: James Johnstone Memorial Volume. Liverpool: University Press of Liverpool, 1934, pp. 176–192.

22. Volcani B. E. Role of silicon in diatom metabolism and silicification. In: Biochemistry of Silicon and Related Problems / G. Bendz, I. Lindqvist, V. Runnström-Reio (Eds.). Boston, MA : Springer, 1978, pp. 177–204. (Nobel Foundation Symp.; vol. 40).

23. Vollenweider R., Giovanardi F., Montanari G., Rinaldi A. Characterization of the trophic conditions of marine coastal waters with special reference to the NW Adriatic Sea: proposal for a trophic scale, turbidity and generalized water quality index. Environmetrics, 1998, vol. 9, iss. 3, pp. 329–357. doi: 10.1002/(SICI)1099-095X(199805/06)9:3<329::AID-ENV308>3.0.CO;2-9.