Fucoxanthin and heavy metals in brown algae of genus Cystoseira C. Agardh from water areas with different anthropogenic influences (Black Sea)

Main Article Content

Ryabushko V. I., Prazukin A. V., Gureeva E. V., Bobko N. I., Kovrigina N. P., Nekhoroshev M. V. Fucoxanthin and heavy metals in brown algae of genus Cystoseira C. Agardh from water areas with different anthropogenic influences (Black Sea). Marine Biological Journal, 2017, vol. 2, no. 2, pp. 70-79. https://doi.org/10.21072/mbj.2017.02.2.07

Article Details


Brown algae are recognized as bioindicators of heavy metal contamination in coastal waters. Comparison of morphological and functional characteristics of algae living in different environmental conditions is essential for understanding mechanisms of marine organism adaptation to anthropogenic environmental impact. The aim of this study is to determinate concentration of fucoxanthin and heavy metals in branches of brown seaweeds Cystoseira barbata (Stackhouse) C. Agardh and Cystoseira crinita Duby in water areas with different anthropogenic pressures. The content of fucoxanthin in the samples is determined by means of thin layer chromatography, and heavy metals are quantified using atomic absorption spectrophotometry. The maximum concentrations of fucoxanthin (3 mg·g-1 of dry weight), lead (48.5 μg·g-1), zinc (62.6 μg·g-1), and cadmium (3.2 μg·g-1) are found in branches of 2- to 3-month-old seaweeds. The content of fucoxanthin in the branches of C. barbata is 1.5 times higher than that in C. crinita. The Cystoseira seaweeds living in a eutrophic bay have higher concentrations of the pigment and zinc than the macrophytes from open waters. The elevated levels of fucoxanthin in brown algae of this genus found in eutrophic and heavy-metal-polluted water areas demonstrate the important role of this carotenoid in the adaptation of the algal photosynthetic apparatus to anthropogenic environmental changes.


V. I. Ryabushko



A. V. Prazukin



E. V. Gureeva
N. I. Bobko



N. P. Kovrigina



M. V. Nekhoroshev




1. Burdin K. S., Zolotukhina E. Yu. Tyazhelye metally v vodnykh rasteniyakh (akkumulyatsiya i toksichnost’). Moscow: Dialog MGU, 1998, 202 p. (in Russ.).

2. GOST 26929-94. Syr’е i produkty pischevye. Podgotovka prob. Mineralizatsia dlja opredelenia soderzhanija toksichnyh elementov. Moscow: IPK Izdatel’stvo standartov. 2002. (in Russ.).

3. Gubanov V. I., Stelmakh L. V., Klimenko N. P. Complex assessments of the Sevastopol offshore water quality (the Black Sea). Ekologiya morya, 2002, iss. 62, pp. 76–80. (in Russ.).

4. Kuftarkova E. A., Rodionova N. Yu., Gubanov V. I., Bobko N. I. Hydrochemical characteristics of several bays of Sevastopol coast. Trudy YugNIRO, 2008, vol. 46, pp. 110–117. (in Russ.).

5. Prazukin A. V. A phenomenological description of Cystoseira barbata branches growth as a basis of their ontogeny division into periods. Ekologiya morya, 1983, iss. 13, pp. 49–58. (in Russ.).

6. Teyubova V. F. Features of the accumulation of heavy metals in thalli of different ages of species Cystoseira (the Novorossiysk Bay, the Black Sea). Morskoi ekologicheskij zhurnal, 2011, vol. 10, no. 3, pp. 67–75. (in Russ.).

7. Firsov Yu. K. Relation of physiological functions of Cystoseira Thallus morphological elements to their age and structure. Biologiya morya, 1978, iss. 44, pp. 68–74. (in Russ.).

8. Khaylov K. M., Kovardakov S. A., Prazukin A. V. Balansovye usloviya podderzhaniya kachestva morskoi sredy v rekreatsionnykh akvatoriyakh. Geopolitika i ekogeodinamika regionov, 2005, vol. 1, iss. 2, pp. 75–82. (in Russ.).

9. Yatsenko G. K. Fiziologitcheskie osobennosti chernomorskoy buroy vodorosli Cystoseira barbata (Good et Wood) Ag. : avtoref. diss. ... kand. biol. nauk. Odessa, 1963, 14 p. (in Russ.).

10. Campbell S. A. Seasonal cycles in the carotenoid content in Mytilus edulis. Marine Biology, 1969, vol. 4, pp. 227–232. doi: 10.1007/BF00393898.

11. Cock J. M., Sterck L., Rouze P., Scornet D., Allen A. E., Amoutzias G., Anthouard V., Artiguenave F., Aury J. M., Badger J. H., Beszteri B., Billiau K., Bonnet E., Bothwell J. H., Bowler C. The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature, 2010, vol. 465, pp. 617–621. doi: 10.1038/nature09016.

12. Costa G., Felix M., Simioni C., Ramlov F., Oliveira E. Effects of copper and lead exposure on the ecophysiology of the brown seaweed Sargassum cymosum. Protoplasma, 2016, vol. 253, no. 1, pp. 111–125. doi: 10.1007/s00709-015-0795-4.

13. Kanazawa K., Ozak Y., Hashimoto T., Das S., Matsushita S., Hirano M., Okada T., Komoto A., Mori N., Nakatsuka M. Commercial-scale preparation of biofunctional fucoxanthin from waste parts of brown sea algae Laminaria japonica. Food Science and Technology Research, 2008, vol. 14, pp. 573–582. doi: 10.3390/md11072667.

14. Mikami K., Hosokawa M. Biosynthetic pathway and health benefits of fucoxanthin, an algae-specific xanthophyll in brown seaweeds. International Journal of Molecular Sciences, 2013, vol. 14, pp. 13763–13781. doi: 10.3390/ijms140713763.

15. Ryabushko V., Prazukin A., Popova E., Nekhoroshev M. Fucoxanthin of the brown alga Cystoseira barbata (Stackh.) C. Agardh from the Black Sea. Journal of Black Sea / Mediterranean Environment, 2014, vol. 20, no. 2, pp. 108–113.

16. Souza P., Ferreira L., Pires N., Filho P. Algae of economic importance that accumulate cadmium and lead: a review. Revista Brasileira de Farmacognosia, 2012, vol. 22, pp. 825–837.

17. Vollenweider R., Giovanardi F., Montanari G., Rinaldi A. Characterization of the trophic conditions of marine coastal waters with special reference to the NW Adriatic Sea: proposal for a trophic scale, turbidity and generalized water quality index. Environmetrics, 1998, vol. 9, pp. 329–357.



Download data is not yet available.