Primary production of the Black Sea: spectral approach

Main Article Content

T. Y. Churilova

http://orcid.org/0000-0002-0045-7284

https://elibrary.ru/author_items.asp?id=888565

O. V. Kryvenko

http://orcid.org/0000-0001-6292-5293

https://elibrary.ru/author_items.asp?id=933995

V. V. Suslin

http://orcid.org/0000-0002-8627-7603

https://elibrary.ru/author_items.asp?id=825673

T. V. Efimova

https://elibrary.ru/author_items.asp?id=766926

N. A. Moiseeva

https://elibrary.ru/author_items.asp?id=959717

Abstract

Primary production (PP) determines productivity of marine ecosystem, that’s why accuracy of PP assessment and investigation of regularities of primary synthesis of organic matter in World Ocean remain crucial. Based on new biooptical dataset spectral model of PP of the Black Sea has been developed for the first time. The model provides correct assessment of amount of light quanta absorbed by phytoplankton pigments and efficiency of their utilization in photosynthesis, which determines accuracy of PP assessment by this approach. In perspectives PP modelling using remote sensed data gives unique opportunity for development of operative monitoring and forecasting of state primary production chain of the Black Sea foodweb.

Article Details

Churilova T. Y., Kryvenko O. V., Suslin V. V., Efimova T. V., Moiseeva N. A. Primary production of the Black Sea: spectral approach. Marine Biological Journal, 2016, vol. 1, no. 3, pp. 50-53. doi: 10.21072/mbj.2016.01.3.08
Keywords:
bio-optical properties, quantum yield, primary production, spectral model, Black Sea
Section
Scientific communications

References

1. Маторин Д. Н., Рубин А. Б. Флуоресценции хлорофилла высших растений и водорослей. Ижевск : ИКИ-РХД, 2012. 256 с. [Matorin D. N., Rubin A. B. Fluorestsentsii khlorofilla vysshikh rastenii i vodoroslei. Izhevsk: IKI-RKhD, 2012, 256 p. (in Russ.)].

2. Финенко З. З., Суслин В. В., Чурилова Т. Я. Региональная модель для расчета первичной продукции Чёрного моря с использованием данных спутникового сканера цвета SeaWiFS // Морской экологический журнал. 2009. Т. 8, № 1. С. 81–106. [Finenko Z. Z., Suslin V. V., Churilova T. Ya. The regional model to calculate the Black Sea primary production using satellite color scanner SeaWiFS. Morskoi ekologicheskii zhurnal, 2009, vol. 8, no. 1, pp. 81–106. (in Russ.)].

3. Чурилова Т. Я., Джулай А. А., Суслин В. В., Кривенко О. В., Ефимова Т. В., Муханов В. С., Рылькова О. А., Манжос Л. А. Биооптические показатели вод глубоководной части Чёрного моря: параметризация поглощения света фитопланктоном в осенний и летний периоды // Экологическая безопасность прибрежной и шельфовой зон и комплексное использование ресурсов шельфа. 2014. Вып. 28. С. 320–333. [Churilova T. Ya., Dzhulai A. A., Suslin V. V., Krivenko O. V., Efimova T. V., Mukhanov V. S., Rylkova O. A., Manzhos L. A. Bioopticheskie pokazateli vod glubokovodnoi chasti Chernogo morya: parametrizatsiya pogloshcheniya sveta fitoplanktonom v osennii i letnii periody. Ekologicheskaya bezopasnost’ pribrezhnoi i shel’fovoi zon i kompleksnoe ispol’zovanie resursov shel’fa, 2014, iss. 28, pp. 320–333. (in Russ.)].

4. Чурилова Т. Я., Ефимова Т. В., Джулай А. А., Суслин В. В., Муханов В. С., Кривенко О. В. Биооптические характеристики вод Чёрного моря в зимний период // Современные проблемы оптики естественных вод : труды VIII междунар. конф. (Санкт-Петербург, 8–12 сент, 2015 г.). Санкт-Петербург, 2015. С. 140–145. [Churilova T. Ya., Efimova T. V., Dzhulai A. A., Suslin V. V., Mukhanov V. S., Krivenko O. V. Bioopticheskie kharakteristiki vod Chernogo morya v zimnii period In: Sovremennye problemy optiki estestvennykh vod: trudy VIII mezhdunar. konf. (Sankt-Peterburg, 8–12 Sept, 2015). Sankt-Peterburg, 2015, pp. 140–145. (in Russ.)].

5. Чурилова Т. Я., Суслин В. В., Кривенко О. В., Ефимова Т. В., Моисеева Н. А. Спектральный подход к оценке скорости фотосинтеза фитопланктона в Чёрном море по спутниковой информации: методологические аспекты развития региональной модели // Журнал Сибирского Федерального университета. Серия: Биология. 2016, в печати. [Churilova T. Ya., Suslin V. V., Krivenko O. V., Efimova T. V., Moiseeva N. A. Spektral’nyi podkhod k otsenke skorosti fotosinteza fitoplanktona v Chernom more po sputnikovoi informatsii: metodologicheskie aspekty razvitiya regional’noi modeli. Zhurnal Sibirskogo Federal’nogo universiteta. Seriya: Biologiya, 2016 (in press.) (in Russ.)].

6. Чурилова Т. Я., Суслин В. В., Рылькова О. А. Параметризация поглощения света основными оптически активными компонентами в Чёрном море // Экологическая безопасность прибрежной и шельфовой зон и комплексное использование ресурсов шельфа. 2008. Вып. 16. С. 190–201. [Churilova T. Ya., Suslin V. V., Rylkova O. A. Parameterization of light absorption by all optically active components in the Black Sea. Ekologicheskaya bezopasnost’ pribrezhnoi i shel’fovoi zon i kompleksnoe ispol’zovanie resursov shel’fa, 2008, iss. 16, pp. 190–201. (in Russ.)].

7. Babin M., Morel A., Claustre H., Bricaud A., Kolber Z., Falkowslu P. G. Nitrogen- and irradiance-dependent variations of the maximum quantum yield of carbon fixation in eutrophic, mesotrophic and oligotrophic marine systems. Deep-Sea Research Part I, 1996, vol. 43, iss. 8, pp. 1241–1272.

8. Bidigare R. R., Smith R. C., Baker K. S., Marra I. Oceanic primary production estimates from measurements of spectral irradiance and pigment concentrations. Global Biogeochemical Cycles, 1987, vol. 1, iss. 3, pp. 171–186.

9. Bricaud A., Claustre H., Ras J., Oubelkheir K. Natural variability of phytoplanktonic absorption in oceanicwaters: Influence of the size structure of algal populations. Journal of Geophysical Research, 2004, vol. 109, iss. C11, pp. 11010c.

10. Churilova T., Finenko Z., Tugrul S. Light absorption and quantum yield of photosynthesis during autumn phytoplankton bloom in the western Black Sea. Morskoi ekologicheskii zhurnal, 2008, vol. 7, no. 3, pp. 75–86. (in English).

11. Churilova T., Suslin V. Parameterization of light absorption by all in-water optically active components in the Black Sea: Impact for underwater irradiance and primary production modelling In: Coastal to Global Operational Oceanography: Achievements and Challenges: Proceedings of the fifth international conference on EuroGOOS. Exeter, UK: EuroGOOS Office, 2010, vol. 28, pp. 199–205.

12. Churilova T., Suslin V. Seasonal and inter-annual variability in waters transparency, chlorophyll a content and primary production in the Black Sea simulated by spectral bio-optical models based on satellite data (SeaWiFS). In: Ocean Optics XXI, Glasgow, Scotland, October 8–12, 2012, CD, 9 p. OO121107_Suslin_Vyacheslav_Vladimirovich_OO1211 07.pdf

13. Churilova T. Ya., Suslin V. V., Sosik H. M. A spectral model of underwater irradiance in the Black Sea. Physical Oceanography, 2009, vol. 19, iss. 6, pp. 366–378. doi:10.1007/s11110-010-9060-8

14. Kok B. A critical consideration of the quantum yield of Chlorella photosynthesis. Amsterdam: W. Junk, 1948, 56 p.

15. Lewis M. R., Warnock R. E., Platt T. Absorption and photosynthetic action spectra for natural phytoplanktonic population: implication for production in the open ocean. Limnology and Oceanography, 1985, vol. 30, iss. 4, pp. 794–806. doi:10.4319/lo.1985.30.4.0794

16. Morel A. Light and marine photosynthesis: A spectral model with geochemical and climatological implications. Progress in Oceanography, 1991, vol. 26, iss. 3, pp. 263–306. doi:10.1016/0079-6611(91)90004-6

17. Platt T., Caverhill C., Sathyendranath S. Basin scale estimates of ocean primary production by remote sensing: The North Atlantic. Journal of Geophysical Research, 1991, vol. 96, iss. C8, pp. 15147–15149. doi:10.1029/91JC01118

18. Saba V.S., Friedrichs M. A. M., Antoine D., Armstrong R. A., Asanuma I., Behrenfeld M. J., Ciotti A. M., Dowell M., Hoepffner N., Hyde K. J. W., Ishizaka J., Kameda T., Marra J., M ́elin F., Morel A., O’Reilly J., Scardi M., Smith Jr. W. O., Smyth T. J., Tang S., Uitz J., Waters K., Westberry T. K. An evaluation of ocean color model estimates of marine primary productivity in coastal and pelagic regions across the globe. Biogeosciences, 2011, vol. 8, iss. 2, pp. 489–509. doi:10.5194/bg-8-489-2011

19. Suslin V., Churilova T. The Black Sea regional algorithm of separation of light absorption by phytoplankton and colored detrital matter using ocean color scanner’s bands from 480–560 nm. International Journal of Remote Sensing, 2016, vol. 37, iss. 18, pp. 4380–4400. doi.org/10.1080/01431161.2016.1211350

20. Wozniak B., Ficek D., Ostrowska M., Majchrowski R., Dera J. Quantum yield of photosynthesis in the Baltic: a new mathematical expression for remote sensing applications. Oceanologia, 2007, vol. 49, iss. 4, pp. 527–542.

21. Finenko Z., Churilova T., Lee R. Dynamics of the Vertical Distributions of Chlorophyll and Phytoplankton Biomass in the Black Sea. Oceanology, 2005, vol. 45, suppl. 1, pp. 112–126.