##plugins.themes.bootstrap3.article.main##

Zheleznova S. N., Gevorgiz R. G. Intensive culture of Cylindrotheca closterium (Ehrenberg) Reimann et Lewin on the nutrient medium with sodium bicarbonate. Marine Biological Journal, 2021, vol. 6, no. 4, pp. 31-38. https://doi.org/10.21072/mbj.2021.06.4.03

##plugins.themes.bootstrap3.article.details##

Abstract

The possibility is shown experimentally of using sodium bicarbonate in a nutrient medium to provide C. closterium culture with carbon under conditions of intensive cultivation without supplying CO2 to the suspension. After C. closterium adaptation to a nutrient medium with sodium bicarbonate with a concentration of 1.2 g·L−1, active growth is observed, with a maximum productivity of 0.6–0.7 g·(L·day)−1 of dry weight. Carbon penetrates into diatom cells both in the form of carbon dioxide and bicarbonate ions. However, all nutrient media for artificial cultivation of diatoms still require using CO2 from the atmosphere or from a gas cylinder. The aim of this work is to assess the possibility of using sodium bicarbonate to provide C. closterium with carbon under conditions of intensive cultivation without supplying CO2 to the suspension. The culture was grown in the mode of accumulative cultivation in a 1-L flask on the RS nutrient medium prepared with sterile Black Sea water; its composition was as follows (g·L−1): NaNO3 – 0.775; NaH2PO4·2H2O – 0.0641; Na2SiO3·9H2O – 0.386; Na2EDTA – 0.0872; FeSO4·7H2O – 0.045; CuSO4·5H2O – 0.2·10−3; ZnSO4·7H2O – 0.44·10−3; CoCl2·6H2O – 0.2·10−3; MnCl2·4H2O – 0.36·10−3; and NaMoO4·H2O – 0.12·10−3. Previously, 1.2 g·L−1 of sodium bicarbonate was dissolved there. Сell suspension was stirred with a magnetic stirrer (250 rpm). On the 4th day of the experiment, 1 g of NaHCO3 and 2 mL of 0.1 N hydrochloric acid were added to the culture in order to lower the medium pH down to 8.6. From the 2nd day of the experiment, active growth was observed, with a maximum productivity of 0.6 g·(L·day)−1. After adding 1 g·L−1 of sodium bicarbonate to the actively growing culture and lowering pH down to 8.6, the growth rate approached almost zero, but considering the increase rate of the medium pH during adaptation, the culture actively absorbed bicarbonate ions. The possibility of cultivating the benthic diatom C. closterium on a nutrient medium with a high sodium bicarbonate content is experimentally shown. As found, on the RS nutrient medium with 1.2 g·L−1 of sodium bicarbonate added under conditions of intensive cultivation, C. closterium maximum productivity reaches 0.7 g·(L·day)−1, with a significant increase in the medium pH. According to our data, optimal medium pH for C. closterium growth is in the range of 8.4–9.4. At higher values (pH > 9.4), the growth of diatoms slows down; at pH = 9.9, the culture enters the dying phase.

Authors

S. N. Zheleznova

junior researcher, PhD

https://orcid.org/0000-0003-1800-5902

https://elibrary.ru/author_items.asp?id=996168

R. G. Gevorgiz

senior researcher, PhD

https://orcid.org/0000-0002-8017-5593

https://elibrary.ru/author_items.asp?id=918203

References

Геворгиз Р. Г., Железнова С. Н., Никонова Л. Л., Бобко Н. И., Нехорошев М. В. Оценка плотности культуры фототрофных микроорганизмов методом йодатной окисляемости. Севастополь : ФГБУН ИМБИ, 2015. 31 с. [Gevorgiz R. G., Zheleznova S. N., Nikonova L. L., Bobko N. I., Nekhoroshev M. V. Otsenka plotnosti kul’tury fototrofnykh mikroorganizmov metodom iodatnoi okislyaemosti. Sevastopol : FGBUN IMBI, 2015, 31 p. (in Russ.)]. https://repository.marine-research.org/handle/299011/43

Железнова С. Н., Геворгиз Р. Г., Бобко Н. И., Лелеков А. С. Питательная среда для интенсивной культуры диатомовой водоросли Cylindrotheca closterium (Ehrenb.) Reimann et Lewin – перспективного объекта биотехнологий // Актуальная биотехнология. 2015. № 3 (14). C. 46–48. [Zheleznova S. N., Gevorgiz R. G., Bobko N. I., Lelekov A. S. The culture medium for the intensive culture of diatomic alga Cylindrotheca closterium (Ehrenb.) Reimann et Lewin – promising biotech facility. Aktual’naya biotekhnologiya, 2015, no. 3 (14), pp. 46–48. (in Russ.)]

Куприянова Е. В., Самылина О. С. CO2-концентрирующий механизм и его особенности у галоалкалофильных цианобактерий // Микробиология. 2015. Т. 84, № 2. С. 144–159. [Kupriyanova E. V., Samylina O. S. CO2-concentrating mechanism and its traits in haloalkaliphilic cyanobacteria. Mikrobiologiya, 2015, vol. 84, no. 2, pp. 144–159. (in Russ.)]. https://doi.org/10.7868/S0026365615010073

Краткая химическая энциклопедия / ред. И. Л. Кнунянц. Москва : Советская энциклопедия, 1961. 931 с. [Kratkaya khimicheskaya entsiklopediya / I. L. Knunyants (Ed.). Moscow : Sovetskaya entsiklopediya, 1961, 931 p. (in Russ.)]

Скопинцев Б. А. Формирование современного химического состава вод Чёрного моря. Ленинград : Гидрометеоиздат, 1975. 336 с. [Skopintsev B. A. Formirovanie sovremennogo khimicheskogo sostava vod Chernogo morya. Leningrad : Gidrometeoizdat, 1975, 336 p. (in Russ.)]

Сонненфелд П. Рассолы и эвапориты : пер. с англ. Москва : Мир, 1988. 480 с. [Sonnenfeld P. Pickles and Evaporates. Moscow : Mir, 1988, 480 p. (in Russ.)]

Хорн Р. А. Морская химия (структура воды и химия гидросферы) : пер. с англ. Москва : Мир, 1972. 400 с. [Horne R. A. Marine Chemistry: The Structure of Water and the Chemistry of the Hydrosphere. Moscow : Mir, 1972, 400 p. (in Russ.)]

Allen A. E., Dupont C. L., Oborník M., Horák A., Nunes-Nesi A., McCrow J. P., Zheng H., Johnson D. A., Hu H., Fernie A. R., Bowler C. Evolution and metabolic significance of the urea cycle in photosynthetic diatoms. Nature, 2011, vol. 473, iss. 7346, pp. 203–207. https://doi.org/10.1038/nature10074

Anderson L. A. On the hydrogen and oxygen-content of marine phytoplankton. Deep Sea Research Part I: Oceanographic Research Papers, 1995, vol. 42, iss. 9, pp. 1675–1680. https://doi.org/10.1016/0967-0637(95)00072-E

Berges J. A., Varela D. E., Harrison P. J. Effects of temperature on growth rate, cell composition and nitrogen metabolism in the marine diatom Thalassiosira pseudonana (Bacillariophyceae). Marine Ecology Progress Series, 2002, vol. 225, pp. 139–146. https://doi.org/10.3354/meps225139

Brown M. R., Jeffrey S. W. The amino acid and gross composition of marine diatoms potentially useful for mariculture. Journal of Applied Phycology, 1995, vol. 7, iss. 6, pp. 521–527. https://doi.org/10.1007/BF00003938

Brown M. R., Jeffrey S. W., Volkman J. K., Dunstan G. A. Nutritional properties of microalgae for mariculture. Aquaculture, 1997, vol. 151, iss. 1–4, pp. 315–331. https://doi.org/10.1016/S0044-8486(96)01501-3

Gügi B., Le Costaouec T., Burel C., Lerouge P., Helbert W., Bardor M. Diatom-specific oligosaccharide and polysaccharide structures help to unravel biosynthetic capabilities in diatoms. Marine Drugs, 2015, vol. 13, iss. 9, pp. 5993–6018. https://doi.org/10.3390/md13095993

Jansson C., Northen T. Calcifying cyanobacteria – The potential of biomineralization for carbon capture and storage. Current Opinion in Biotechnology, 2010, vol. 21, iss. 3, pp. 365–371. https://doi.org/10.1016/j.copbio.2010.03.017

Jensen E. L., Clement R., Kosta A., Maberly S. C., Gontero B. A new widespread subclass of carbonic anhydrase in marine phytoplankton. The ISME Journal, 2019, vol. 13, pp. 2094–2106. https://doi.org/10.1038/s41396-019-0426-8

Keeling P. J. The endosymbiotic origin, diversification and fate of plastids. Philosophical Transactions of the Royal Society B, 2010, vol. 365, iss. 1541, pp. 729–748. https://doi.org/10.1098/rstb.2009.0103

Lebeau T., Robert J.-M. Diatom cultivation and biotechnologically relevant products. Part I: Cultivation at various scales. Applied Microbiology and Biotechnology, 2003, vol. 60, iss. 6, pp. 612–623. https://doi.org/10.1007/s00253-002-1176-4

Matsuda Y., Hopkinson B. M., Nakajima K., Dupont C. L., Tsuji Y. Mechanisms of carbon dioxide acquisition and CO2 sensing in marine diatoms: A gateway to carbon metabolism. Philosophical Transactions of the Royal Society B, 2017, vol. 372, art. no. 20160403 (12 p.). https://doi.org/10.1098/rstb.2016.0403

Matsuda Y., Kroth P. G. Carbon fixation in diatoms. In: The Structural Basis of Biological Energy Generation / M. F. Hohmann-Marriott (Ed.). Dordrecht, Heidelberg : Springer, 2014, pp. 335–362. (Advances in Photosynthesis and Respiration ; vol. 39.)

Matsumoto M., Nojima D., Nonoyama T., Ikeda K., Maeda Y., Yoshino T., Tanaka T. Outdoor cultivation of marine diatoms for year-round production of biofuels. Marine Drugs, 2017, vol. 15, no. 4, art. no. 94 (12 p.). https://doi.org/10.3390/md15040094

Nesara K. M., Bedi C. S. Diatomix: A diatoms enhancer. Journal of FisheriesSciences.com, 2019, vol. 13, iss. 2, pp. 12–15. https://www.fisheriessciences.com/fisheries-aqua/diatomix-a-diatoms-enhancer.pdf

Obata T., Fernie A. R., Nunes-Nesi A. The central carbon and energy metabolism of marine diatoms. Metabolites, 2013, vol. 3, iss. 2, pp. 325–346. https://doi.org/10.3390/metabo3020325

Reinfelder J. R., Milligan A. J., Morel F. M. The role of the C4 pathway in carbon accumulation and fixation in a marine diatom. Plant Physiology, 2004, vol. 135, iss. 4, pp. 2106–2111. https://doi.org/10.1104/pp.104.041319

Roberts K., Granum E., Leegood R. C., Raven J. A. Carbon acquisition by diatoms. Photosynthesis Research, 2007, vol. 93, iss. 1–3, pp. 79–88. https://doi.org/10.1007/s11120-007-9172-2

Ying L., Kangsen M. Effect of growth phase on the fatty acid compositions of four species of marine diatoms. Journal of Ocean University of China, 2005, vol. 4, iss. 2, pp. 157–162. https://doi.org/10.1007/s11802-005-0010-x

Statistics

Downloads

Download data is not yet available.