Adaptation of natural yeast strains to heavy metal and radionuclides salts

Main Article Content

V. P. Stepanova

https://elibrary.ru/author_items.asp?id=153370

A. V. Suslov

leading engineer, PhD

http://orcid.org/0000-0001-9419-1597

https://elibrary.ru/author_items.asp?id=153368

I. N. Suslova

researcher, PhD

http://orcid.org/0000-0002-4497-1867

https://elibrary.ru/author_items.asp?id=141387

E. A. Sukhanova

research laboratory assistant

https://elibrary.ru/author_items.asp?id=92222

B. F. Yarovoy

researcher, PhD

https://elibrary.ru/author_items.asp?id=153369

V. N. Verbenko

head of laboratory, D. Sc.

http://orcid.org/0000-0002-6264-2688

https://elibrary.ru/author_items.asp?id=89604

Abstract

Ability of natural yeast strains to grow in conditions of high concentrations of heavy metal and radionuclides salts was studied. More than 500 strains were tested for resistance to salts of heavy metals (U, Cs, Sr, Ni, Ar, Cu, Cd, and Co) and to elevated temperature (t) (+37…+52 °C). Most of the strains tested were resistant to one or more selective factors. Combinations of (t, Cd, Cu, Co) and (Cd, Cu, Co) occurred with the highest frequencies: 36 and 26 %, respectively. Ability of isolated strains to grow in the presence of high concentrations of radioactive isotopes Cs and Ni and to bind them with high efficiency was established. The results showed the possibility of potential using of libraries of natural microorganisms for disposal of both radionuclides and heavy metals, which are the main pollutants of natural and anthropogenic objects, as well as the possibility of using of isolated and tested strains of microorganisms for concentrating metals from low-grade ores or mining industry waste. Phenotypes diversity revealed indicates probable existence of several mechanisms of resistance to high heavy metals concentrations.

Article Details

Stepanova V. P., Suslov A. V., Suslova I. N., Sukhanova E. A., Yarovoy B. F., Verbenko V. N. Adaptation of natural yeast strains to heavy metal and radionuclides salts. Marine Biological Journal, 2020, vol. 5, no. 3, pp. 64-73. doi: 10.21072/mbj.2020.05.3.06
Keywords:
natural yeast strains, adaptation, heavy metals, radioisotopes 137Cs and 63Ni, bioremediation
Section
Scientific communications

References

Вредные химические вещества. Неорганические соединения V–VIII групп : справочник / под ред. В. А. Филова. Ленинград : Химия, 1989. 592 с. [Vrednye khimicheskie veshchestva. Neorganicheskie soedineniya V–VIII grupp : spravochnik / V. A. Filov (Ed.). Leningrad : Khimiya, 1989, 552 p. (in Russ.)]

Захаров И. А., Кожин С. А., Кожина Т. Н., Федорова И. В. Сборник методик по генетике дрожжей-сахаромицетов. Ленинград : Наука, 1984. 144 с. [Zakharov I. A., Kozhin S. A., Kozhina T. N., Fedorova I. V. Sbornik metodik po genetike drozhzhei-sakharomitsetov. Leningrad : Nauka, 1984, 144 p. (in Russ)]

Зенин А. А., Белоусова Н. В. Гидрохимический словарь. Ленинград : Гидрометеоиздат, 1988. 240 с. [Zenin A. A., Belousova N. V. Gidrokhimicheskii slovar’. Leningrad : Gidrometeoizdat, 1988, 240 p. (in Russ.)]

Никаноров А. М. Гидрохимия. Санкт-Петербург : Гидрометеоиздат, 2001. 444 с. [Nikanorov A. M. Gidrokhimiya. Saint Petersburg : Gidrometeoizdat, 2001, 444 p. (in Russ.)]

Руководство по химическому анализу поверхностных вод суши / под ред. А. Д. Семенова. Ленинград : Гидрометеоиздат, 1977. 541 с. [Rukovodstvo po khimicheskomu analizu poverkhnostnykh vod sushi / A. D. Semenov (Ed.). Leningrad : Gidrometeoizdat, 1977, 541 p. (in Russ.)]

Azubuike C. C., Chikere C. B., Okpokwasili G. C. Bioremediation techniques – classification based on site of application: Principles, advantages, limitations, and prospects. World Journal of Microbiology and Biotechnology, 2016, vol. 32, iss. 11, art. 180 (18 p.). https://doi.org/10.1007/s11274-016-2137-x

Barnett J. A., Payne R. W., Yarrow D. Yeasts: Characteristics and Identification. Cambridge : Cambridge University Press, 1983, 811 p.

Brim H., McFarlan S. C., Fredrickson J. K., Minton K. W., Zhai M., Wackett L. P., Daly M. J. Engineering Deinococcus radiodurans for metal remediation in radioactive mixed waste environments. Nature Biotechnology, 2000, vol. 18, iss. 1, pp. 85–90. https://doi.org/10.1038/71986

Chen C. Y., Lin T. H. Nickel toxicity to human term placenta: in vitro study on lipid peroxidation. Journal of Toxicology and Environmental Health. Part A, 1998, vol. 54, iss. 1, pp. 37–47. https://doi.org/10.1080/009841098159015

Fulkerson J. F. Jr., Garner R. M., Mobley H. L. T. Conserved residues and motifs in the NixA protein of Helicobacter pylori are critical for the high affinity transport of nickel ions. The Journal of Biological Chemistry, 1998, vol. 273, iss. 1, pp. 235–241. https://doi.org/10.1074/jbc.273.1.235

Gadd G. M., White C. Microbial treatment of metal pollution – A working biotechnology? Trends in Biotechnology, 1993, vol. 11, iss. 8, pp. 353–359. https://doi.org/10.1016/0167-7799(93)90158-6

Jansson-Charrier M., Guibal E., Surjous R., Le Cloirec P. Continuous removal of uranium by biosorption onto chitosan: Application to an industrial effluent. In: Biohydrometallurgical Processing : proc. of the Intern. Biohydrometallurgy Symp. IBS-95, Viña del Mar, Chile, Nov. 19–22, 1995 / C. A. Jerez, T. Vargas, H. Toledo, J. V. Wiertz (Eds). Santiago, Chile : University of Chile, 1995, pp. 257–266.

Kreger-van Rij N. J. W. The Yeasts. A Taxonomic Study. Amsterdam : Elsevier Science Publishers, 1984, 1082 p.

Krishnaswamy R., Wilson D. B. Construction and characterization of an Escherichia coli strain genetically engineered for Ni(II) bioaccumulation. Applied and Environmental Microbiology, 2000, vol. 66, no. 12, pp. 5383–5386. https://doi.org/10.1128/aem.66.12.5383-5386.2000

Kuippers G., Boothman C., Bagshaw H., Ward M., Beard R., Bryan N., Lloyd J. R. The biogeochemical fate of nickel during microbial ISA degradation; implications for nuclear waste disposal. Scientific Reports, 2018, vol. 8, no. 1, art. 8753 (11 p.). https://doi.org/10.1038/s41598-018-26963-8

Lin K. C., Chou I. N. Studies on the mechanisms of nickel ion-induced cell injury: Effects of nickel ion on microtubules. Toxicology and Applied Pharmacology, 1990, vol. 106, iss. 2, pp. 209–221. https://doi.org/10.1016/0041-008x(90)90241-l

Lloyd J. R., Macaskie L. E. Bioremediation of radionuclide-containing wastewaters. In: Environmental Microbe-Metal Interactions / D. R. Lovley (Ed.). Washington, DC : ASM Press, 2000, chap. 13, pp. 277–327. https://doi.org/10.1128/9781555818098.ch13

Malla M., Dubey A., Yadav S., Kumar A., Hashem A., Add_Allah E. F. Understanding and designing the strategies for the microbe-mediated remediation of environmental contaminants using omics approaches. Frontiers in Microbiology, 2018, vol. 9, art. 1132 (18 p.). https://doi.org/10.3389/fmicb.2018.01132

MeGraw V. E., Brown A. R., Boothman C., Goodacre R., Morris K., Sigee D., Anderson L., Lloyd J. R. A novel adaptation mechanism underpinning algal colonization of a nuclear fuel storage pond. mBio, 2018, vol. 9, iss. 3, art. e02395-17. https://doi.org/10.1128/mBio.02395-17

Orellana R., Macaya C., Bravo G., Dorochesi F., Cumsille A., Valencia R., Rojas C., Seeger M. Living at the frontier of life: Extremophiles in Chile and their potential for bioremediation. Frontiers in Microbiology, 2018, vol. 9, art. 2309 (25 p.). https://doi.org/10.3389/fmicb.2018.02309

Polyakova A. V., Panikov N. S., Chernov I. Yu. Yeast diversity in hydromorphic soils with reference to a grass-sphagnum wetland in Western Siberia and a hummocky tundra region at Cane Barrow (Alaska). Microbiology, 2001, vol. 70, iss. 5, pp. 617–622. https://doi.org/10.1023/A:1012328710111

Prakash D., Gabani P., Chandel A. K., Ronen Z., Singh O. V. Bioremediation: A genuine technology to remediate radionuclides from the environment. Microbial Biotechnology, 2013, vol. 6, no. 4, pp. 349–360. https://doi.org/10.1111/1751-7915.12059

Schneider I. A. H., Rubio J. New trends in biosorption of heavy metals by freshwater macrophytes. In: Biohydrometallurgical Processing : proc. of the Intern. Biohydrometallurgy Symp. IBS-95, Viña del Mar, Chile, Nov. 19–22, 1995 / C. A. Jerez, T. Vargas, H. Toledo, J. V. Wiertz (Eds). Santiago, Chile : University of Chile, 1995, pp. 247–256.

Velea I., Voicu A., Lazar I. Biosorption of some metallic ions from industrial effluents using fungal strains and bacterial exopolysaccharides. In: Biohydrometallurgical Processing : proc. of the Intern. Biohydrometallurgy Symp. IBS-95, Viña del Mar, Chile, Nov. 19–22, 1995 / C. A. Jerez, T. Vargas, H. Toledo, J. V. Wiertz (Eds). Santiago, Chile : University of Chile, 1995, pp. 267–276.

White C., Sayer J. A., Gadd G. M. Microbial solubilization and immobilization of toxic metals: Key biogeochemical processes for treatment of contamination. FEMS Microbiology Review, 1997, vol. 20, iss. 3–4, pp. 503–516. https://doi.org/10.1111/j.1574-6976.1997.tb00333.x