Variability of size characteristics and survival of the nauplii of Crimean brine shrimp Artemia spp. (Branchiopoda: Anostraca) feeding on different species of microalgae

Main Article Content

D. Yu. Smirnov

http://orcid.org/0000-0002-8194-0840

https://elibrary.ru/author_items.asp?id=744565

L. O. Aganesova

http://orcid.org/0000-0003-4052-7985

https://elibrary.ru/author_items.asp?id=822967

A. N. Khanaychenko

http://orcid.org/0000-0002-4334-9996

https://elibrary.ru/author_items.asp?id=873164

Abstract

Nauplii of brine shrimps Artemia spp. (Branchiopod: Anostraca) are one of the main species of live food used in marine fish larviculture. Specialized formulated enrichments or microalgae containing essential components for fish larvae are routinely used for improvement of biochemical composition of Artemia. Size, growth rate and survival of nauplii and metanauplii are important when Artemia is used as a live food. The goal of this study was to carry out comparative analysis of size characteristics and survival of metanauplii of the Crimean brine shrimp (produced by “Artemia cysts” company) feeding on different species of microalgae. Nauplii were hatched in accordance with the generally accepted procedure. Microalgae of different taxons – Isochrysis galbana, Prorocentrum micans, Gymnodinium wulffii, Prorocentrum cordatum, Tetraselmis suecica, Phaeodactylum tricornutum – were used for feeding metanauplii. The average diameter of dry Artemia cysts was 0.230 mm. The average length and width of nauplii were 0.473 and 0.150 mm, respectively. The average length of 1-day old metanauplii fed on T. suesica [(0,698 ± 0,014) mm] was significantly less than that of 1-day metanauplii fed on I. galbana, P. micans, G. wulfii, and Ph. tricornutum (P < 0.05). The average length and width of the 2-day and 3-days old metanauplii fed on I. galbana (1.19 and 0.324; 1.53 and 0.47 mm, respectively) were significantly larger than those of metanauplii fed on Ph. tricornutum, T. suesica, P. micans, and P. cordatum. Metanauplii fed on P. cordatum were significantly smaller than those fed on other diets. The survival of metanauplii fed on P. cordatum, P. micans, and T. suecica was the highest (above 95 %). The combination of the smallest sizes and highest survival rate of metanauplii fed on P. cordatum (microalgae with high DHA/EPA content) assumes the use on metanauplii as an experimental live food for marine fish larvae.

Article Details

Smirnov D. Yu., Aganesova L. O., Khanaychenko A. N. Variability of size characteristics and survival of the nauplii of Crimean brine shrimp Artemia spp. (Branchiopoda: Anostraca) feeding on different species of microalgae // Marine Biological Journal. 2019. Vol. 4, no. 1. P. 91-99. doi: 10.21072/mbj.2019.04.1.08
Keywords
Artemia, cysts, metanauplii, microalgae, size, survival, aquaculture, Crimea
Section
Scientific communications

References

1. Аганесова Л. О. Выживаемость и длительность развития копепод Calanipeda aquaedulcis и Arctodiaptomus salinus в зависимости от питания микроводорослями разных таксономических групп // Морской экологический журнал. 2011. Т. 10, № 2. С. 27–33. [Aganesova L. O. Survival and development times of the copepods Calanipeda aquaedulcis and Arctodiaptomus salinus depending on feeding microalgae of different taxonomic groups. Morskoj ekologicheskij zhurnal, 2011, vol. 10, no. 2, pp. 27–33. (in Russ.)]

2. Голубев А. П., Шевцова С. Н. Биометрическая характеристика размеров цист в популяциях жаброногих раков рода Artemia с разной плоидностью // Сахаровские чтения 2006 года: экологические проблемы XXI века : материалы 6-ой Междунар. науч. конф., Минск, 18–19 мая 2006 г. Минск, 2006. С. 300–303. [Golubev A. P., Shevtsova S. N. Biometricheskaya kharakteristika razmerov tsist v populyatsiyakh zhabronogikh rakov roda Artemia s raznoi ploidnost’yu. In: Sakharovskie chteniya 2006 goda: ekologicheskie problemy XXI veka : materialy 6-oi Mezhdunar. nauch. konf., Minsk, 18–19 May, 2006. Minsk, 2006, pp. 300–303. (in Russ.)]

3. Голубев А. П., Шевцова С. Н. Морфометрическая характеристика яиц и науплисов из партеногенетических и двуполых популяций жаброногих раков рода Artemia // Сахаровские чтения 2005 года: экологические проблемы XXI века : материалы 5-ой Междунар. науч. конф., Минск, 20–21 мая 2005 г. Минск, 2005. С. 193–194. [Golubev A. P., Shevtsova S. N. Morfometricheskaya kharakteristika yaits i nauplisov iz partenogeneticheskikh i dvupolykh populyatsii zhabronogikh rakov roda Artemia. In: Sakharovskie chteniya 2005 goda: ekologicheskie problemy XXI veka : materialy 5-oi Mezhdunar. nauch. konf., Minsk, 20–21 May, 2005. Minsk, 2005, pp. 193–194. (in Russ.)]

4. Литвиненко Л. И., Литвиненко А. И., Бойко Е. Г. Артемия в озерах Западной Сибири. Новосибирск : Наука, 2009. 304 с. [Litvinenko L. I., Litvinenko A. I., Boiko E. G. Artemiya v ozerakh Zapadnoi Sibiri. Novosibirsk: Nauka, 2009. 304 p. (in Russ.)]

5. Петипа Т. С. Трофодинамика копепод в морских планктонных сообществах. Киев : Наукова думка, 1981. 245 с. [Petipa T. S. Trofodinamika kopepod v morskikh planktonnykh soobshchestvakh. Kiev: Naukova dumka, 1981, 245 p. (in Russ.)]

6. Ханайченко А. Н. Влияние микроводорослевой диеты на характеристики воспроизводства копепод // Экология моря. 1999. Вып. 49. С. 56–61. [Khanaychenko A. N. The effect of microalgal diet on copepod reproduction parameters. Ekologiya morya, 1999, iss. 49, pp. 56–61. (in Russ.)]

7. Andersen R. A. Algae culturing techniques. New York: Elsevier Academic Press, 2005, 578 p.

8. Cunha I., Planas M. Optimal prey size for early turbot larvae (Scophthalmus maximus L.) based on mouth and ingested prey size. Aquaculture, 1999, vol. 175, iss. 1–2, pp. 103–110. https://doi.org/10.1016/S0044-8486(99)00040-X

9. Emmerson W. D. Predation and energetics of Penaeus indicus (Decapoda, Penaeidae) larvae feeding on Brachionus plicatilis and Artemia nauplii. Aquaculture, 1984, vol. 38, iss. 3, pp. 201–209. https://doi.org/10.1016/0044-8486(84)90144-3

10. Guzmán H. M., de la Jara Valido A., Duarte L. C., Presmanes K. F. Estimate by means of flow cytometry of variation in composition of fatty acids from Tetraselmis suecica in response to culture conditions. Aquaculture international, 2010, vol. 18, iss. 2, pp. 189–199. https://doi.org/10.1007/s10499-008-9235-1

11. Kat M. Dinophysis acuminata blooms, the distinct cause of Dutch mussel poisoning. In: Toxic Dinoflagellates : proc. 3rd Intern. Conf. on Toxic Dinoflagellates, St. Andrews, New Brunswick, Canada, 8–12 June, 1985. New York: Elsevier, 1985, pp. 73–77.

12. Khanaychenko A. N., Dhert P., Van Ryckeghem K., Sorgeloos P. Evaluation of fatty acid composition of live feed fed Dinophyceae. In: Aquaculture and Water: Fish Culture, Shellfish Culture and Water Usage : International Conference Aquaculture Europe’98, Bordeaux, France, 7–10 October, 1998. Oostende: European Aquaculture Society, 1998, pp. 133–134.

13. Léger P., Bengtson D. A., Simpson K. L., Sorgeloos P. The use and nutritional value of Artemia as a food source. In: Oceanography and Marine Biology. An Annual Review, 1986, vol. 24, pp. 521–623.

14. Makri A., Bellou S., Birkou M., Papatrehas K., Dolapsakis N. P., Bokas D., Aggelis G. Lipid synthesized by micro-algae grown in laboratory- and industrial-scale bioreactors. Engineering in Life Sciences, 2011, vol. 11, iss. 1, pp. 52–58. https://doi.org/10.1002/elsc.201000086

15. Merchie G. Use of nauplii and meta-nauplii. In: Manual on the production and use of live food for aquaculture / P. Lavens, P. Sorgeloos (Eds). Rome, 1996, pp. 137–163. (FAO Fisheries Technical Paper ; no. 361.)

16. Mohebbi F., Hafezieh M., Seidgar M., Hosseinzadeh Sahhafi H., Mohsenpour Azari A., Ahmadi R. The growth, survival rate and reproductive characteristics of Artemia urmiana fed by Dunaliella tertiolecta, Tetraselmis suecica, Nannochloropsis oculata, Chaetoceros sp., Chlorella sp. and Spirolina sp. as feeding microalgae. Iranian Journal of Fisheries Sciences, 2016, vol. 15, no. 2, pp. 727–737.

17. Patil V., Reitan K. I., Knutsen G., Mortensen L. M., Källqvist T., Olsen E., Gislerød H. R. Microalgae as source of polyunsaturated fatty acids for aquaculture. Current Topics in Plant Biology, 2005, vol. 6, pp. 57–65.

18. Payne M. F. Evaluation of diets for culture of the calanoid copepod Gladioferens imparipes. Aquaculture, 2000, vol. 187, iss. 1–2, pp. 85–96. https://doi.org/10.1016/S0044-8486(99)00391-9

19. Poulet S. A., Laabir M., Ianora A., Miralto A. Reproductive response of Calanus helgolandicus. I. Abnormal embryonic and naupliar development. Marine Ecology Progress Series, 1995, vol. 129, no. 1/3, pp. 85–95. https://doi.org/10.3354/meps129085

20. Reitan K. I., Rainuzzo J. R., Øie G., Olsen Y. Nutritional effects of algal addition in first-feeding of turbot (Scophthalmus maximus L.) larvae. Aquaculture, 1993, vol. 118, iss. 3–4, pp. 257–275. https://doi.org/10.1016/0044-8486(93)90461-7

21. Shadrin N., Anufriieva E., Galagovets E. Distribution and historical biogeography of Artemia Leach, 1819 (Crustacea: Anostraca) in Ukraine. International Journal of Artemia Biology, 2012, vol. 2, no. 2, pp. 30–42.

22. Sorgeloos P., Lavens P., Leger P. H., Tackaert W., Versichele D. Manual for the culture and use of brine shrimp Artemia in aquaculture / Artemia Reference Center, State University of Ghent, Belgium. Ghent: State University of Ghent, 1986, 319 p.

23. Van Stappen G. Use of cysts. In: Manual on the production and use of live food for aquaculture / P. Lavens, P. Sorgeloos (Eds). Rome, 1996, pp. 107–136. (FAO Fisheries Technical Paper ; no. 361.)

24. Tocher D. R. Fatty acid requirements in ontogeny of marine and freshwater fish. Aquaculture Research, 2010, vol. 41, iss. 5, pp. 717–732. https://doi.org/10.1111/j.1365-2109.2008.02150.x

25. Zhukova N. V., Aizdaicher N. A. Fatty acid composition of 15 species of marine microalgae. Phytochemistry, 1995, vol. 39, iss. 2, pp. 351–356. https://doi.org/10.1016/0031-9422(94)00913-E