The effect of copper on the abundance, cell morphology and content of photosynthetic pigments in the microalga Porphyridium purpureum

Main Article Content

Zh. V. Markina

http://orcid.org/0000-0001-7135-1375

https://elibrary.ru/author_items.asp?id=251096

N. A. Aizdaicher

http://orcid.org/0000-0003-0003-6073

https://elibrary.ru/author_items.asp?id=84560

Abstract

Red microalga Porphyridium purpureum adaptive abilities to copper intoxication were studied. Cell number dynamics and morphology, contents of chlorophyll a and carotenoids were used as test-points. The experiment was conducted in two stages. At the first stage the effect of copper in concentrations of 50 and 100 µg·l−1 was studied; at the second stage the alga adaptive abilities to growth in copper contaminated medium were assessed. At the first stage copper concentration of 50 µg·l−1 didn’t influence the parameters under study. Addition of 100 µg·l−1 caused growth inhibition and photosynthetic pigment content decrease. At the second stage after transferring alga to a medium with 50 µg·l−1 copper concentration from a medium with similar conditions, cell number and photosynthetic pigment content were not significantly different from the control ones. Part of the cells deformed, chloroplasts became darkened. Transferring to a medium with 100 µg·l−1 from a medium with 50 µg·l−1 copper concentration caused growth delay; most of the cells in suspension were with dark, granulated chloroplast. Cells transferring from a medium with 100 µg·l−1 to a medium with the same concentration resulted in growth inhibition and photosynthetic pigment content decrease. Part of the cells in suspension became lager than in control and with great amount of mucilage. Complete adaptation of P. purpureum to copper intoxication didn’t occur.

Article Details

Markina Zh. V., Aizdaicher N. A. The effect of copper on the abundance, cell morphology and content of photosynthetic pigments in the microalga Porphyridium purpureum. Marine Biological Journal, 2019, vol. 4, no. 4, pp. 34-40. doi: 10.21072/mbj.2019.04.4.03
Keywords:
Porphyridium purpureum, adaptation, copper, cells number, photosynthetic pigments
Section
Scientific communications

References

Качество морских вод по гидрохимическим показателям. Ежегодник 2015 / под ред. А. Н. Коршенко. Москва : Наука, 2016. 190 с. [Kachestvo morskikh vod po gidrokhimicheskim pokazatelyam. Ezhegodnik 2015 / A. N. Korshenko (Ed.). Moscow : Nauka, 2016, 190 p. (in Russ.)]

Adams M. S., Dillon C. T., Vogt S., Lai B., Stauber J., Jolley A. Copper uptake, intracellular localization, and speciation in marine microalgae measured by synchrotron radiation X-ray fluorescence and absorption microspectroscopy. Environmental Science & Technology, 2016, vol. 50, iss. 16, pp. 8827–8839. http://doi.org/10.1021/acs.est.6b00861

Ahalya N., Ramachandra T. V., Kanamadi N. Biosorption of heavy metals. Research Journal of Chemical & Environmental Sciences, 2003, vol. 7, iss. 4, pp. 71–79.

Asgharpour M., Rodgers B., Hestekin J. A. Eicosapentaenoic acid from Porphyridium cruentum: Increasing growth and productivity of microalgae for pharmaceutical products. Energies, 2015, vol. 8, iss. 9, pp. 10487–10503. https://doi.org/10.3390/en80910487

Cid A., Filargo P., Herrero C., Abalde J. Toxic action of copper on the membrane system of a marine diatom measured by flow cytometry. Cytometry, 1996, vol. 25, iss. 1, pp. 32–36. https://doi.org/10.1002/(SICI)1097-0320(19960901)25:1<32::AID-CYTO4>3.0.CO;2-G

Crespo E., Losano P., Blasco J., Moreno-Garrido I. Effect of copper, irgarol and atrazine on epiphytes attached to artificial devices for coastal ecotoxicology bioassays. Bulletin of Environmental Contamination and Toxicology, 2013, vol. 91, iss. 6, pp. 656–600. https://doi.org/10.1007/s00128-013-1122-4

De Jesus Raposo M. F., de Morais R. M. S. C., de Morais A. M. M. B. Bioactivity and applications of sulphated polysaccharides from marine microalgae. Marine Drugs, 2013, vol. 11, iss. 1, pp. 233–252. https://doi.org/10.3390/md11010233

Franklin N. M., Stauber J. L., Lim R. P. Development of flow cytometry-based algal bioassays for assessing toxicity of copper in natural waters. Environmental Toxicology and Chemistry, 2001, vol. 20, iss. 1, pp. 160–170.

Gouveia C., Kreusch M., Schmidt E. C., Felix M. R. de L., Osorio L. K. P., Pereira D. T., Santos R., Ouriques L. C., Martins R. P., Latini A., Ramlov F., Carvalho T. J. G., Chow F., Maraschin M., Bouzon Z. L. The effects of lead and copper on the cellular architecture and metabolism of the red alga Gracilaria domingensis. Microscopy and Microanalysis, 2013, vol. 19, iss. 3, pp. 513–524. http://dx.doi.org/10.1017/s1431927613000317

Guillard R. R. L., Ryther J. H. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Canadian Journal of Microbiology, 1962, vol. 8, no. 2, pp. 229–239. https://doi.org/10.1139/m62-029

Hamed S. M., Selim S., Klöck G., AbdElgawad H. Sensitivity of two green microalgae to copper stress: Growth, oxidative and antioxidants analyses. Ecotoxicology and Environmental Safety, 2017, vol. 144, pp. 19–25. https://dx.doi.org/10.1016/j.ecoenv.2017.05.048

Jeffrey S. W., Humphrey G. F. New spectrophotometric equations for determining chlorophyll a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochemie und Physiologie der Pflanzen, 1975, vol. 167, iss. 2, pp. 191–194. https://doi.org/10.1016/S0015-3796(17)30778-3

Jiang W., Liu D. H., Liu X. Effects of copper on root growth, cell division, and nucleolus of Zea mays. Biologia Plantarum, 2001, vol. 44, iss. 1, pp. 105–109. https://doi.org/10.1023/A:1017982607493

Kiseleva A. A., Tarachovskaya E. R., Shishova M. F. Biosynthesis of phytohormones in algae. Russian Journal of Plant Physiology, 2012, vol. 59, iss. 5, pp. 595–610. http://doi.org/10.1134/S1021443712050081

Kumar S. K., Shin K.-H. Effect of copper on marine microalga Tetraselmis suecica and its influence on ultra- and extracellular iron and zinc content. Korean Journal of Ecology and Environment, 2017, vol. 50, no. 1, pp. 16–28. https://doi.org/10.11614/KSL.2017.50.1.016

Leung P. T. Y., Yi A. X., Ip J. C. H., Mak S. S. T., Leung K. M. Y. Photosynthetic and transcriptional responses of the marine diatom Thalassiosira pseudonana to the combined effect of temperature stress and copper exposure. Marine Pollution Bulletin, 2017, vol. 124, iss. 2, pp. 938–945. http://doi.org/10.1016/j.marpolbul.2017.03.038

Levy J., Stauber J. L., Jolley D. F. Sensitivity of marine microalgae to copper: The effect of biotic factors on copper adsorption and toxicity. Science of the Total Environment, 2007, vol. 387, iss. 1–3, pp. 141–154. http://doi.org/10.1016/j.scitotenv.2007.07.016

Li X., Ping X., Xlumet S., Zhenbin W., Liqtang X. Toxicity of cypermethrin on growth, pigments, and superoxide dismutase of Scenedesmus obliquus. Ecotoxicology Environmental Safety, 2005, vol. 60, iss. 2, pp. 188–192. https://doi.org/10.1016/j.ecoenv.2004.01.012

Liu D., Jiang W., Meng Q., Zou J., Gu J., Zeng M. Cytogenetical and ultrastructural effects of copper on root meristem cells of Alleum sativum L. Biocell, 2009, vol. 33, iss. 1, pp. 25–32.

Machado M. D., Soares E. V. Modification of cell volume and proliferative capacity of Pseudokirchneriella subcapitata cells exposed to metal stress. Aquatic Toxicology, 2014, vol. 147, pp. 1–6. http://dx.doi.org/10.1016/j.aquatox.2013.11.017

Miazek K., Iwanek W., Remacle C., Richel A., Goffin D. Effect of metals, metalloids and metallic nanoparticles on microalgae growth and industrial products biosynthesis: A review. International Journal of Molecular Sciences, 2015, vol. 16, iss. 10, pp. 23929–23969. https://doi.org/10.3390/ijms161023929

Nagajoti P. C., Lee K. D., Sreekanth T. V. M. Heavy metals, occurrence and toxicity for plants: A review. Environmental Chemistry Letters, 2010, vol. 8, iss. 3, pp. 199–216. http://doi.org/10.1007/s10311-010-0297-8

Perales-Vela H. V., González-Moreno S., Montes-Horcasitas C., Cañizares-Villanueva R. O. Growth, photosynthetic and respiratory responses to sub-lethal copper concentrations in Scenedesmus incrassatulus (Chlorophyceae). Chemosphere, 2007, vol. 67, iss. 11, pp. 2274–2281. http://doi.org/10.1016/j.chemosphere.2006.11.036

Schmitt F.-J., Renger G., Friedrich T., Kreslavski V. D., Zharmukhamedov S. K., Los D. A., Kuznetsov V. V., Allakhverdiev S. I. Reactive oxygen species: Re-evaluation of generation, monitoring and role in stress-signaling in phototrophic organisms. Biochimica et Biophysica Acta, 2014, vol. 1837, iss. 6, pp. 835–848. http://dx.doi.org/10.1016/j.bbabio.2014.02.005

Voznesenskiy S. S., Popik A. Y., Gamayunov E. L., Orlova T. Y., Markina Zh. V., Kulchin Y. N. Biosensors based on micro-algae for ecological monitoring of the aquatic environment. In: Algae – Organisms for Imminent Biotechnology. Rijeka : Intech, 2016, chap. 5, pp. 103–131. http://doi.org/10.5772/62801

Voznesenskiy S. S., Popik A. Yu., Gamayunov E. L., Orlova T. Yu., Markina Zh. V., Postnova I. V., Shchipunov Yu. A. One stage immobilization of the microalga Porphyridium purpureum using a biocompatible silica precursor and study of the fluorescence of its pigments. European Biophysics Journal, 2018, vol. 47, iss. 1, pp. 75–85. http://doi.org/10.1007/s00249-017-1213-y

Yruela I. Copper in plants. Brazilian Journal of Plant Physiology, 2005, vol. 17, no. 1, pp. 145–156. http://dx.doi.org/10.1590/S1677-04202005000100012