Influence of insolation on the dynamics of fucoxanthin content in brown algae of the genus Cystoseira C. Agardh (Black Sea)

Main Article Content

V. I. Ryabushko

http://orcid.org/0000-0001-5052-2024

https://elibrary.ru/author_items.asp?id=425419

E. V. Gureeva
M. A. Gureev

http://orcid.org/0000-0002-0385-922X

https://elibrary.ru/author_items.asp?id=747073

M. V. Nekhoroshev

http://orcid.org/0000-0001-8054-0215

https://elibrary.ru/author_items.asp?id=747789

Abstract

Photosynthetically active radiation plays an important role in regulating the vital activity of marine macrophytes; therefore, the problem of determining the dependence of fucoxanthin concentration (FC) in brown algae of genus Cystoseira on the energy of the light flux seems to be relevant. C. barbata and C. crinitа samples were taken from depth of 0.5 to 1.0 m in the conventionally clean region of the Southern Coast of Crimea (Foros settlement) and in the water area with moderate anthropogenic load (Sevastopol, Karantinnaya Bay). The annual dynamics of the FC content in macrophytes has well-defined periods of maximum and minimum. Peak concentrations of FC are in the autumn-winter period. The minimum values of the pigment in the spring-summer period are marked at maximum illumination. The modeling of the dependence of the fucoxanthin content in brown algae of the genus Cystoseira on the intensity of the total light flow using polynomial approximation made it possible to establish that this process is well described by a biquadrate equation with a high determination coefficient.

Article Details

Ryabushko V. I., Gureeva E. V., Gureev M. A., Nekhoroshev M. V. Influence of insolation on the dynamics of fucoxanthin content in brown algae of the genus Cystoseira C. Agardh (Black Sea) // Marine Biological Journal. 2018. Vol. 3, no. 4. P. 84-91. doi: 10.21072/mbj.2018.03.4.09
Keywords
brown algae genus Cystoseira, fucoxanthin, energy of light flow, Black Sea
Section
Scientific communications

References

1. Ладыгин В. Г., Ширшикова Г. Н. Современные представления о функциональной роли каротиноидов в хлоропластах эукариот // Журнал общей биологии. 2006. Т. 67, № 3. С. 163–189. [Ladygin V. G., Shirshikova G. N. The current concepts of functional role of carotenoids in the eukaryotic chloroplasts. Zhurnal obshhei biologii, 2006, vol. 67, no. 3, pp. 163–189. (in Russ.)].

2. Макаров М. В. Адаптация светособирающего комплекса бурой водоросли Fucus vesiculosus L. Баренцева моря к условиям освещения // Доклады Академии наук. 2012. Т. 442, № 6. С. 845–849. [Makarov M. V. Аdaptatsiya svetosobirayushchego kompleksa buroi vodorosli Fucus vesiculosus L. Barentseva morya k usloviyam osveshcheniya. Doklady Аkademii nauk, 2012, vol. 442, no. 6, pp. 845–849. (in Russ.)].

3. Макаров М. В., Воскобойников Г. М. Влияние освещения и температуры на макроводоросли Баренцева моря // Вопросы современной альгологии. 2017. № 3 (15). URL: http://algology.ru/1183. [Makarov M. V., Voskoboinikov G. M. Influence of light and temperature on Barents Sea seaweed. Voprosy sovremennoy al’gologii, 2017, no. 3 (15). URL: http://algology.ru/1183. (in Russ.)].

4. Нефедов В. Н., Осипова В. А. Курс дискретной математики. Москва : МАИ, 1992. 260 с. [Nefedov V. N., Osipova V. A. Kurs diskretnoi matematiki. Moscow: MAI, 1992, 260 p. (in Russ.)].

5. Празукин А. В. Феноменологическое описание роста ветвей Cystoseira barbata как основа периодизации их онтогенеза // Экология моря. 1983. Вып. 15. С. 49–58. [Prazukin A. V. A phenomenological description of Cystoseira barbata branches growth as a basis of their ontogeny division into periods. Ekologiya morya, 1983, iss. 15, pp. 49–58. (in Russ.)].

6. Титлянов Э. А., Колмаков П. В., Лелеткин В. А., Воскобойников Г. М. Новый тип адаптации водных растений к свету // Биология моря. 1987. № 2. С. 48–57. [Titlyanov E. A., Kolmakov P. V., Leletkin V. A., Voskoboinikov G. M. Novyi tip adaptatsii vodnykh rastenii k svetu. Biologiya morya, 1987, no. 2, pp. 48–57. (in Russ.)].

7. Airanthi M. K. W.-A., Hosokawa M., Miyashita K. J. Comparative antioxidant activity of edible Japanese brown seaweeds. Journal of Food Science, 2011, vol. 76, iss. 1, pp. 104–111. https://doi.org/10.1111/j.1750-3841.2010.01915.x.

8. Anderson J. M., Barrett J. Chlorophyll-protein complexes of brown algae: P700 reaction centre and light-harvesting complexes. Ciba Foundation Symposium, 1978, vol. 61, pp. 81–104.

9. Campbell S. J., Bite J. S., Burridge T. R. Seasonal patterns in the photosynthetic capacity, tissue pigment and nutrient content of different developmental stages of Undaria pinnatifida (Phaeophyta: Laminariales) in Port Phillip Bay, South-Eastern Australia. Botanica Marina, 1999, vol. 42, iss. 3, pp. 231–241. https://doi.org/10.1515/BOT.1999.027.

10. Eonseon J., Polle J. E. W., Lee H. K., Hyun S. M., Chang M. Xanthophylls in microalgae: from biosynthesis to biotechnological mass production and application. Journal of Microbiology and Biotechnology, 2003, vol. 13, iss. 2, pp. 165–174.

11. Katoh T., Mimuro M., Takaichi S. Light-harvesting particles isolated from a brown alga, Dictyota dichotoma: A supramolecular assembly of fucoxanthin-chlorophyll-protein complexes. Biochimica et Biophysica Acta (BBA) – Bioenergetics, 1989, vol. 976, iss. 2–3, pp. 233–240. https://doi.org/10.1016/S0005-2728(89)80235-X.

12. Katoh T., Tanaka A., Mimuro M. Xanthosomes: Supramolecular assemblies of xanthophyllchlorophyll a/c protein complexes. Methods in Enzymology, 1993, vol. 214, pp. 402–412. https://doi.org/10.1016/0076-6879(93)14084-V.

13. Miyashita K., Nishikawa S., Beppu F., Tsukui A., Hosokawa M. The allenic carotenoid fucoxanthin, a novel marine nutraceutical from brown seaweeds. Journal of the Science of Food and Agriculture, 2011, vol. 91, iss. 7, pp. 1166–1174. https://doi.org/10.1002/jsfa.4353.

14. Nomura M., Kamogawa H., Susanto E., Kawagoe C., Yasui H., Saga N., Hosokawa M., Miyashita K. Seasonal variations of total lipids, fatty acid composition, and fucoxanthin contents of Sargassum horneri (Turner) and Cystoseira hakodatensis (Yendo) from the northern seashore of Japan. Journal of Applied Phycology, 2013, vol. 25, iss. 4, pp. 1159–1169. https://doi.org/10.1007/s10811-012-9934-x.

15. Piovan A., Seraglia R., Bresin B., Caniato R., Filippini R. Fucoxanthin from Undaria pinnatifida: Photostability and coextractive effects. Molecules, 2013, vol. 18, iss. 6, pp. 6298–6310. https://doi.org/10.3390/molecules18066298.

16. Pfeifroth U., Kothe S., Müller R., Trentmann J., Hollmann R., Fuchs P., Werscheck M. Surface Radiation Data Set – Heliosat (SARAH). Satellite Application Facility on Climate Monitoring, 2017, Edition 2. https://doi.org/10.5676/EUM_SAF_CM/SARAH/V002.

17. Ryabushko V. I., Prazukin A. V., Gureeva E. V., Bobko N. I., Kovrigina N. G., Nekhoroshev M. V. Fucoxanthin and heavy metals in brown algae of genus Cystoseira C. Agardh from water areas with different anthropogenic influences (Black Sea) // Morskoj biologicheskij zhurnal, 2017, vol. 2, no. 2, pp. 70–79. https://doi.org/10.21072/mbj.2017.02.2.07.

18. Ryabushko V., Prazukin A., Popova E., Nekhoroshev M. Fucoxanthin of the brown alga Cystoseira barbata (Stackh.) C. Agardh from the Black Sea. Journal of Black Sea / Mediterranean Environment, 2014, vol. 20, no. 2, pp. 108–113.

19. Savitzky A., Golay M. J. E. Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry, 1964, vol. 36, iss. 8, pp. 1627–1639. https://doi.org/10.1021/ac60214a047.

20. Terasaki M., Hirose A., Narayan B., Baba Y., Kawagoe C., Yasui H., Miyashita K. Evaluation of recoverable functional lipid components of several brown seaweeds (Phaeophyta) from Japan with special reference to fucoxanthin and fucosterol contents. Journal of Phycology, 2009, vol. 45, iss. 4, pp. 974‒980. https://doi.org/10.1111/j.1529-8817.2009.00706.x.

21. Wu C. Y., Wen Z., Peng Z., Zhang J. A preliminary comparative study of the productivity of three economic seaweeds. Chinese Journal of Oceanology and Limnology, 1984, vol. 2, pp. 97–101.