Epiphytic bacteria on the brown algae Fucus vesiculosus Linnaeus, 1753 (Barents Sea)

Main Article Content

D. V. Pugovkin

http://orcid.org/0000-0003-4614-4969

https://elibrary.ru/author_items.asp?id=610439

G. M. Voskoboinikov

http://orcid.org/0000-0001-5683-5590

https://elibrary.ru/author_items.asp?id=68391

Abstract

Brown algae in symbiotic relations with epiphytic bacteria play an important role in the bioremediation of the marine environment after the ingress of petroleum products; therefore, the study of these groups of organisms in the habitats with different pollution levels is of importance. The aim of the investigation was to study the structure of the surface of the brown algae Fucus vesiculosus and the localization of epiphytic bacteria on it in clean (Zelenetskaya Bay, East Murman) and oil-polluted (Kola Bay, Murmansk Seaport) water areas of the Barents Sea by the methods of scanning and transmission electron microscopy. To determine the number of cultivable heterotrophic bacteria, we chose the method of using liquid nutrient mediums. It was shown that most of the bacteria in the epiphytic community are concentrated in the natural “hollows” of the surface. On the surface of the algae from the polluted water area, bacteria are also localized in the mucous layer of plants, on the film and under the film of petroleum products, that covers the thallus. Besides the heterotrophic bacteria, a large number of cyanobacteria were found on the surface of algae from oil-polluted areas. It was shown that the number of cultivable bacteria on the surface of algae in the polluted area was more than 17 million cells per cm². In the clean water, the number of epiphytic bacteria reached 14.5 thousand cells per cm². The number of cultivable epiphytic hydrocarbon-oxidizing bacteria in the oil-polluted water was up to 17.4 thousand cells per cm². In the clean water, bacteria of this group were not detected.

Article Details

Keywords
epiphytic bacteria, Fucus vesiculosus, thallus of algae, electron microscopy, oil products, oil hydrocarbons
Section
Scientific communications

References

1. Ильинский В. В., Воскобойников Г. М., Пуговкин Д. В., Комарова Т. И., Адейкина А. А. Влияние нефтяного загрязнения среды на состав и численность гетеротрофных эпифитных бактерий бурой водоросли Fucus vesiculosus // Вестник Южного научного центра РАН. 2010. Т. 6, № 2. С. 98–100. [Il’inskii V. V., Voskoboinikov G. M., Pugovkin D. V., Komarova T. I., Adeikina A. A. Influence of oil pollution on the composition and abundance of heterotrophic epiphyte bacteria of brown algae from the Barents Sea. Vestnik Yuzhnogo nauchnogo tsentra RAN, 2010, vol. 6, no. 2, pp. 98–100. (in Russ.)].

2. Коронелли Т. В., Ильинский В. В. Об учете численности углеводородокисляющих бактерий в морской воде методом предельных разведений // Вестник Московского университета. Сер. 16. Биология. 1984. № 3. С. 54–56. [Koronelli T. V., Il’inskii V. V. Ob uchete chislennosti uglevodorodokislyayushchikh bakterii v morskoi vode metodom predel’nykh razvedenii. Vestnik Moskovskogo universiteta. Ser. 16. Biologiya, 1984, no. 3, pp. 54–56. (in Russ.)].

3. Морозов Н. В. Экологическая биотехнология: очистка природных и сточных вод макрофитами. Казань : Издательство КГПУ, 2001. 396 с. [Morozov N. V. Ekologicheskaya biotekhnologiya: ochistka prirodnykh i stochnykh vod makrofitami. Kazan’: Izdatel’stvo KGPU, 2001, 396 p. (in Russ.)].

4. Практическая гидробиология. Пресноводные экосистемы / под ред. В. Д. Федорова, В. И. Капкова. Москва : ПИМ, 2006. 367 с. [Prakticheskaya gidrobiologiya. Presnovodnye ekosistemy / V. D. Fedorov, V. I. Kapkov (Eds). Moscow: PIM, 2006, 367 p. (in Russ.)].

5. Раилкин А. И. Колонизация твердых тел бентосными организмами. Санкт-Петербург : Изд-во СПб. ун-та, 2008. 427 с. [Railkin A. I. Kolonizatsiya tverdykh tel bentosnymi organizmami. Saint Petersburg: Izd-vo SPb. un-ta, 2008, 427 p. (in Russ.)].

6. Садчиков А. П., Кудряшов М. А. Гидроботаника: прибрежно-водная растительность. Москва : Академия, 2005. 240 с. [Sadchikov A. P., Kudryashov M. A. Gidrobotanika: pribrezhnovodnaya rastitel’nost’. Moscow: Akademiya, 2005, 240 p. (in Russ.)].

7. Семенова Е. В., Шлыкова Д. С., Семенов А. М., Иванов М. Н., Шеляков О. В., Нетрусов А. И. Бактерии-эпифиты бурых водорослей в утилизации нефти в экосистемах северных морей // Вестник Московского университета. Сер. 16. Биология. 2009. Т. 16, № 3. С. 18–22. [Semenova E. V., Shlykova D. S., Semenov A. M., Ivanov M. N., Shelyakov O. V., Netrusov A. M. Bacteria-epiphytes of brown macro alga in utilization of oil in ecosystems of north seas. Vestnik Moskovskogo universiteta. Ser. 16. Biologiya, 2009, vol. 16, no. 3, pp. 18–22. (in Russ.)].

8. Степаньян О. В., Воскобойников Г. М. Влияние нефти и нефтепродуктов на морфофункциональные особенности морских макроводорослей // Биология моря. 2006. Т. 32, № 4. С. 241–248. [Stepanyan O. V., Voskoboinikov G. M. The effects of oil and oil products on the morphofunctional characteristics of marine macroalgae. Biologiya morya, 2006, vol. 32, no. 4, pp. 241–248. (in Russ.)].

9. Уикли Б. Электронная микроскопия для начинающих. Москва : Мир, 1975. 324 с. [Uikli B. Elektronnaya mikroskopiya dlya nachinayushchikh. Moscow: Mir, 1975, 324 p. (in Russ.)].

10. Bengtsson M. M., Sjøtun K., Øvreås L. Seasonal dynamics of bacterial biofilms on the kelp Laminaria hyperborea. Aquatic Microbial Ecology, 2010, vol. 60, pp. 71–83. https://doi.org/10.3354/ame01409.

11. Bolinches J., Lemos M. L., Barja J. L. Population dynamics of heterotrophic bacterial communities associated with Fucus vesiculosus and Ulva rigida in an estuary. Microbial Ecology, 1988, vol. 15, iss. 3, pp. 345–357.

12. Characklis W. Biofilm development: a process analysis. In: Microbial adhesion and aggregation / Marshall K. C. (Ed.). Berlin ; Heidelberg ; New York ; Tokio: Springer-Verlag, 1984, pp. 137–157. https://doi.org/10.1007/978-3-642-70137-5_11.

13. Dimitrieva G. Y., Dimitriev S. M. Symbiotic microflora of brown algae of the genus Laminaria as a bioindicator of the ecological condition of coastal laminarian biocenoses. Russian Journal of Marine Biology, 1996, vol. 22, iss. 5, pp. 276–281.

14. Marshall K. C., Stout R., Mitchell R. Selective sorption of bacteria from seawater. Canadian Journal of Microbiology, 1971, vol. 17, no. 11, pp. 1413–1416.

15. Mills A. L., Breul C., Colwell R. R. Enumeration of petroleum-degrading marine and estuarine microorganisms by the most probably number method. Canadian Journal of Microbiology, 1978, vol. 24, pp. 552–557.

16. Pugovkin D. V., Liaimer A., Jensen J. B. Epiphytic bacterial communities of the alga Fucus vesiculosus in oil-contaminated water areas of the Barents Sea. Doklady Biological Sciences, 2016, vol. 471, iss. 1, pp. 269–271. https://doi.org/10.1134/S0012496616060053.

17. Staufenberger T., Thiel V., Wiese J., Imhoff J. F. Phylogenetic analysis of bacteria associated with Laminaria saccharina. FEMS Microbiology Ecology, 2008, vol. 64, iss. 1, pp. 65–77. https://doi.org/10.1111/j.1574-6941.2008.00445.x.

18. Tujula N. A., Crocetti G. R., Burke C., Thomas T., Holmstrom C. & Kjelleberg S. Variability and abundance of the epiphytic bacterial community associated with a green marine Ulvacean alga. The ISME Journal, 2010, vol. 4, no. 2, pp. 301–311. https://doi.org/10.1038/ismej.2009.107.

19. Voskoboinikov G. M., Matishov G. G., Metel’kova L. O., Zhakovskaya Z. A., Lopushanskaya E. M. Participation of the green algae Ulvaria obscura in bioremediation of sea water from oil products. Doklady Biological Sciences, 2018, vol. 481, iss. 1, pp. 139–141. https://doi.org/10.1134/S0012496618040026.

20. Wrabel M. L., Peckol P. Effects of bioremediation on toxicity and chemical composition of No. 2 fuel oil: growth responses of the brown alga Fucus vesiculosus. Marine Pollution Bulletin, 2000, vol. 40, iss. 2, pp. 135–139. https://doi.org/10.1016/S0025-326X(99)00181-2.