Effect of Cu²⁺ high concentrations on protein oxidation (carbonyl proteins) in digestive gland of some representatives of Lirrorina genus (Mollusca, Gastropoda)

Main Article Content

Zhukovskaya A. F., Chesnokova A. A., Kos’yanenko D. V., Kos’yanenko A. A., Chelomin V. P. Effect of Cu²⁺ high concentrations on protein oxidation (carbonyl proteins) in digestive gland of some representatives of Lirrorina genus (Mollusca, Gastropoda). Marine Biological Journal, 2019, vol. 4, no. 3, pp. 48-55. https://doi.org/10.21072/mbj.2019.04.3.05

Article Details


One of the anthropogenic impacts on the marine environment is the entry into the coastal waters of heavy metals easily accumulating in the tissues of marine hydrobionts. The heavy metals accumulation leads to disruptions in the normal course of biochemical processes, which often result in the death of the total organism. The metals toxicity to the organism can be enhanced due to a number of physical factors, such as oxygen availability, salinity, and temperature fluctuations. The aim of the work is to compare the effect of copper ions high concentrations on representatives of marine invertebrates differing in ecological and physiological characteristics (Littorina mandshurica (Schrenk, 1861) and Littorina squalida Broderip & G. B. Sowerby I, 1829) using oxidative stress biomarker – carbonyl proteins. Molluscs were taken from Alekseev Bay of the Peter the Great Bay (Sea of Japan, Russia) and incubated at different concentrations of Cu2+ (10, 40 and 100 μg per l) in the seawater. Analysis of the content of proteins oxidized forms in the digestive gland of the studied species was carried out after 5 and 10 days of the experiment. In the course of the experiment, the species sensitivity to different concentrations of Cu2+ and to the time of toxicant exposure was revealed. The dependence of the obtained results (an increase of the protein carbonyls concentration in the digestive gland of L. mandshurica and the death of individuals of L. squalida) on ecological and physiological features of the studied species is shown.


A. F. Zhukovskaya



A. A. Chesnokova



D. V. Kos'yanenko



A. A. Kos'yanenko



V. P. Chelomin




Животные и растения залива Петра Великого. Ленинград : Наука, Ленинград. отд-е, 1976. 362 с. [Zhivotnye i rasteniya zaliva Petra Velikogo. Leningrad: Nauka, Leningrad. otd-e, 1976, 362 p. (in Russ.)]

Истомина А. А., Довженко Н. В., Бельчева Н. Н., Челомин В. П. Влияние меди на антиоксидантную систему брюхоногих моллюсков Littorina mandshurica и Tegula rustica в условиях гипоксии // Вестник СПбГУ. Серия 3: Биология. 2011. Вып. 4. С. 25–31. [Istomina A. A., Dovzhenko N. V., Bel’cheva N. N., Chelomin V. P. Effect of copper on the antioxidant system in the gastropods Littorina mandshurica and Tegula rustica during air exposure. Vestnik SpbGU. Seriya 3: Biologiya, 2011, iss. 4, pp. 25–31. (in Russ.)]

Almroth B. C., Sturve J., Berglund Å., Förlin L. Oxidative damage in eelpout (Zoarces viviparus) measured as protein carbonyl sand TBARS, as biomarkers. Aquatic Toxicology, 2005, vol. 73, iss. 2, pp. 171–180. http://doi.org/10.1016/j.aquatox.2005.03.007

Belcheva N., Istomina A., Dovzhenko N., Lishavskaya T., Chelomin V. Using heavy metal content and lipid peroxidation indicators in the tissues of the mussel Crenomytilus grayanus for pollution assessment after marine environmental remediation. Bulletin of Environmental Contamination and Toxicology, 2015, vol. 95, iss. 4, pp. 481–487. http://doi.org/10.1007/s00128-015-1624-3

Funes V., Alhama J., Navas J. I., López-Barea J., Peinado J. Ecotoxicological effects of metal pollution in two mollusc species from the Spanish South Atlantic littoral. Environmental Pollution, 2006, vol. 139, iss. 2, pp. 214–223. http://doi.org/10.1016/j.envpol.2005.05.016

Gonzales P. M., Wilhelms-Dick D., Abele D., Puntarulo S. Iron in coastal marine ecosystems: Role in oxidative stress. In: Oxidative Stress in Aquatic Ecosystems / Abele D., Vazquez-Medina J. P., Zenteno-Savin (Eds). Boston ; Oxford: Blackwell Publishing, 2012, pp. 115–125.

Grimsrud P. A., Xie H., Griffin T. J., Bernlohr D. A. Oxidative stress and covalent modification of protein with bioactive aldehydes. The Journal of Biological Chemistry, 2008, vol. 283, no. 3, pp. 21837–21841. http://doi.org/10.1074/jbc.R700019200

Istomina A., Belcheva N., Chelomin V. Antioxidant system of the intertidal mollusk Littorina kurila in its natural habitat. Journal of Environmental Science and Engineering, 2013, vol. 2, no. 2A, pp. 713–718.

Livingstone D. Oxidative stress in aquatic organisms in relation to pollution and aquaculture. Revue de Médecine Vétérinaire, 2003, vol. 154, no. 6, pp. 427–430. https://www.revmedvet.com/2003/RMV154_427_430.pdf

Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 1951, vol. 193, iss. 1, pp. 265–275.

Markwell M. A. K., Haas S. M., Bieber L. L., Tolbert N. E. A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Analytical Biochemystry, 1978, vol. 87, iss. 1, pp. 206–210. https://doi.org/10.1016/0003-2697(78)90586-9

McDonagh B., Tyther R., Sheehan D. Carbonylation and glutathionylation of proteins in the blue mussel Mytilus edulis detected by proteomic analysis and Western blotting: Actin as a target for oxidative stress. Aquatic Toxicology, 2005, vol. 73, iss. 3, pp. 315–326. https://doi.org/10.1016/j.aquatox.2005.03.020

Mesquita C. S., Oliveira R., Bento F., Geraldo D., Rodrigues J. V., Marcos J. C. Simplified 2,4-dinitrophenylhydrazine spectrophotometric assay for quantification of carbonyls in oxidized proteins. Analytical Biochemistry, 2014, vol. 458, pp. 69–71. http://doi.org/10.1016/j.ab.2014.04.034

O’Connor T. P., Lauenstein G. G. Status and trends of copper concentrations in mussels and oysters in the USA. Marine Chemistry, 2005, vol. 97, iss. 1–2, pp. 49–59. https://doi.org/10.1016/j.marchem.2004.04.007

Veldhuizen-Tsoerkan M. B., Holwerda D. A., Zandee D. I. Anoxic survival time and metabolic parameters as stress indices in sea mussel exposed to cadmium or polychlorinated biphenyls. Archives of Environmental Contamination and Toxicology, 1991, vol. 20, iss. 2, pp. 259–265. https://doi.org/10.1007/BF01055913

Vosloo D., Sara J., Vosloo A. Acute responses of brown mussel (Perna perna) exposed to sub-lethal copper levels: Integration of physiological and cellular responses. Aquatic Toxicology, 2012, vol. 106–107, pp. 1–8. http://doi.org/10.1016/j.aquatox.2011.10.001

Wu R. S. S. Hypoxia: From molecular responses to ecosystem responses. Marine Pollution Bulletin, 2002, vol. 45, iss. 1–12, pp. 35–45.

Xiu M., Pan L., Jin Q. Bioaccumulation and oxidative damage in juvenile scallop Chlamys farreri exposed to benzo[a]pyrene, benzo[b]fluoranthene and chrysene. Ecotoxicology and Environmental Safety, 2014, vol. 107, pp. 103–110. http://doi.org/10.1016/j.ecoenv.2014.05.016

Xu K., Tang Z., Liu S., Liao Z., Hu X., Liu L., Wang Z., Qi P. Effects of low concentrations copper on antioxidant responses, DNA damage and genotoxicity in thick shell mussel Mytilus coruscus. Fish & Shellfish Immunology, 2018, vol. 82, pp. 77–83. http://doi.org/10.1016/j.fsi.2018.08.016

Zitoun R., Clearwater S. J., Hassler C., Thompson K. J., Albert A., Sander S. G. Copper toxicity to blue mussel embryos (Mytilus galloprovincialis): The effect of natural dissolved organic matter on copper toxicity in estuarine waters. Science of the Total Environment, 2019, vol. 653, pp. 300–314. http://doi.org/10.1016/j.scitotenv.2018.10.263



Download data is not yet available.