How diatom Cylindrotheca closterium vanquish invasive copepod Oithona davisae

Main Article Content

A. N. Khanaychenko


Some diatoms are rich food for herbivorous copepods, while others are toxic for their recruitment. No negative effect of diatom Cylindrotheca closterium was ever observed for copepods, and some estuarine copepods preferred it as a food. Data on grazing diatoms by abundant now in the Black Sea coastal waters invasive copepod Oithona davisae are still contradictory. Interaction of O. davisae and C. closterium, both having high colonizing potential and both typical for coastal waters, was studied in experimental culture. Two weeks after inoculation of C. closterium the cultured O. davisae was drastically fouled by globulous conglomerates of diatom cells. Diatom cells in “colonies” on copepod exoskeleton were interconnected by means of adhesive substances at one of their flexible ends at the point-wise areas at various parts of copepods exoskeleton, and the opposite flexible ends performed various circular roll-over fan-shaped movements around the axis passing through the point of their attachment. “Colonies” behaved as integrated aggressive organisms against any approaching flagellate and prevented normal locomotion of copepods. Herein we present the first report on epizoic behavior of C. closterium: quick disastrous colonization of alive copepods O. davisae by diatom “colonies” led to total extinction of cyclopoid experimental population while alive diatoms formed dense network on copepods degenerative tissues.

Article Details

diatom, Cylindrotheca closterium, colonization, copepod, Oithona davisae, Black Sea
Scientific communications


1. Alcoverro T., Conte E., Mazzella L. Production of mucilage by the Adriatic epipelic diatom Cylindrotheca closterium (Bacillariophyceae) under nutrient limitation. Journal of Phycology, 2000, vol. 36, iss. 6, pp. 1087–1095.

2. Altukhov D., Gubanova A., Mukhanov V. New invasive copepod Oithona davisae Ferrari and Orsi, 1984: seasonal dynamics in Sevastopol Bay and expansion along the Black Sea coasts. Marine Ecology, 2014, vol. 35, iss. s1, pp. 28–34.

3. Apoya-Horton M. D., Yin L., Underwood G. J. C., Gretz M. R. Movement modalities and responses to environmental changes of the mudflat diatom Cylindrotheca closterium (Bacillariophyceae). Journal of Phycology, 2006, vol. 42, iss. 2, pp. 379–390.

4. Ban S., Burns C., Castel J., Chaudron Y., Christou E., Escribano R., Ianora A. The paradox of diatom-copepod interactions. Marine Ecology Progress Series, 1997, vol. 157, pp. 287–293.

5. Bodeanu N. Algal blooms in Romanian Black Sea waters in the last two decades of the XXᵗʰ century. Cercetări Marine, 2002, vol. 34, pp. 7–22.

6. Cheba B. A. Chitin and chitosan: marine biopolymers with unique properties and versatile applications. Global Journal of Biotechnology & Biochemistry, 2011, vol. 6, no. 3, pp. 149–153.

7. De Brouwer J. F., Stal L. J. Daily fluctuations of exopolymers in cultures of the benthic diatoms Cylindrotheca closterium and Nitzschia sp. (Bacillariophyceae). Journal of Phycology, 2002, vol. 38, iss. 3, pp. 464–472.

8. Dhanker R., Molinero J. C., Kumar R., Tseng L. C., Ianora A., Hwang J. S. Responses of the estuarine copepod Pseudodiaptomus annandalei to diatom polyunsaturated aldehydes: Reproduction, survival and postembryonic development. Harmful algae, 2015, vol. 43, pp. 74–81.

9. Gárate-Lizárraga I., Esqueda-Escárcega G. M. Proliferation of Falcula hyalina and Cylindrotheca closterium (Bacillariophyceae) on copepods in Bahía de La Paz, Gulf of California, Mexico. Revista de Biologia Marina y Oceanografia, 2016, vol. 15, no. 1, pp. 197–201.

10. Gifford S. M., Rollwagen-Bollens G., Bollens S. M. Mesozooplankton omnivory in the upper San Francisco Estuary. Marine Ecology Progress Series, 2007, vol. 348, pp. 33–46.

11. Guiry M. D., Guiry G. M. Algaebase. World-wide electronic publication. National University of Ireland, Gallway, 2018.

12. Hiromi J., Imanishi D., Kadota S. Effect of Cylindrotheca closterium (Bacillariophyceae) on the growth of red-tide raphidophycean flagellate Heterosigma akashiwo. Bulletin of the College of Agriculture and Veterinary Medicine, Nihon University, 1995, vol. 52, pp. 122–125.

13. Khanaychenko A., Mukhanov V., Aganesova L., Besiktepe S., Gavrilova N. Grazing and feeding selectivity of Oithona davisae in the Black Sea: importance of cryptophytes. Turkish Journal of Fisheries and Aquaculture Research, 2018, vol. 18, pp. 937–949.

14. Li Y., Gao Y. H., Li X. S., Yang J. Y., Que G. H. Influence of surface free energy on the adhesion of marine benthic diatom Nitzschia closterium MMDL533. Colloids and Surfaces B: Biointerfaces, 2010, vol. 75, iss. 2, pp. 550–556.

15. Magesky A., Belzile C., Pelletier É. Cell–mediated immune response of post-metamorphic sea urchin juveniles against infectious stages of diatom Cylindrotheca closterium (Bacillariophyceae). Journal of Invertebrate Pathology, 2017, vol. 148, pp. 124–128.

16. Miralto A., Barone G., Romano G., Poulet S. A., Ianora A., Russo G. L., Giacobbe M. G. The insidious effect of diatoms on copepod reproduction. Nature, 1999, vol. 402, no. 6758, pp. 173–176.

17. Moncheva S., Gotsis-Skretas O., Pagou K., Krastev A. Phytoplankton blooms in Black Sea and Mediterranean coastal ecosystems subjected to anthropogenic eutrophication: similarities and differences. Estuarine, Coastal and Shelf Science, 2001, vol. 53, iss. 3, pp. 281–295.

18. Nakane T., Nakaka K., Bouman H., Platt T. Environmental control of short-term variation in the plankton community of inner Tokyo Bay, Japan. Estuarine, Coastal and Shelf Science, 2008, vol. 78, iss. 4, pp. 796–810.

19. Nevrova E. L., Petrov A. N. Comparative analysis of benthic diatoms taxonomic diversity in different regions of the Black Sea. Morskoj ekologicheskij zhurnal, 2007, vol. 6, no. 4, pp. 43–54. (in Russ.).

20. Pinzaru S. C., Müller C., Tomšić S., Venter M. M., Brezestean I., Ljubimir S., Glamuzina B. Live diatoms facing Ag nanoparticles: surface enhanced Raman scattering of bulk Cylindrotheca closterium pennate diatoms and of the single cells. RSC Advances, 2016, vol. 6, iss. 49, pp. 42899–42910.

21. Pletikapić G., Radić T. M., Zimmermann A. H., Svetličić V., Pfannkuchen M., Marić D., Žutić V. AFM imaging of extracellular polymer release by marine diatom Cylindrotheca closterium (Ehrenberg) Reiman & J. C. Lewin. Journal of Molecular Recognition, 2011, vol. 24, iss. 3, pp. 436–445.

22. Ryabushko L. I. Microphytobenthos of the Black Sea. Sevastopol: EKOSI-Gidrofisika, 2013, 416 p. (in Russ.).

23. Ryabushko V. I., Zheleznova S. N., Nekhoroshev M. V. Effect of nitrogen on fucoxanthin accumulation in the diatom Cylindrotheca closterium (Ehrenb.) Reimann et Lewin. International Journal on Algae, 2017, vol. 19, no. 1, pp. 79–84.

24. Saks N. M., Stone R. J., Lee J. J. Autotrophic and heterotrophic nutritional budget of salt marsh epiphytic algae. Journal of Phycology, 1976, vol. 12, iss. 4, pp. 443–448.

25. Svetlichny L., Hubareva E., Khanaychenko A., Gubanova A., Altukhov D., Besiktepe S. Adaptive strategy of thermophilic Oithona davisae in the cold Black Sea environment. Turkish Journal of Fisheries and Aquatic Sciences, 2016, vol. 16, no. 1, pp. 77–90.

26. Svetličić V., Žutić V., Pletikapić G., Radić T. M. Marine polysaccharide networks and diatoms at the nanometric scale. International Journal of Molecular Sciences, 2013, vol. 14, no. 10, pp. 20064–20078.

27. Tsuda A., Nemoto T. Feeding of copepods on natural suspended particles in Tokyo Bay. Journal of the Oceanographical Society of Japan, 1988, vol. 44, iss. 5, pp. 217–227.

28. Turkoglu M., Koray T. Algal blooms in surface waters of the Sinop Bay in the Black Sea, Turkey. Pakistan Journal of Biological Sciences, 2004, vol. 7, iss. 9, pp. 1577–1585.

29. Wyckmans M., Chepurnov V. A., Vanreusel A., De Troch M. Effects of food diversity on diatom selection by harpacticoid copepods. Journal of Experimental Marine Biology and Ecology, 2007, vol. 345, iss. 2, pp. 119–128.