Hydroacoustical regularities of food behavior of dolphins

Main Article Content

V. A. Ryabov

http://orcid.org/0000-0002-2635-6676

https://elibrary.ru/author_items.asp?id=906593

Abstract

Hydroacoustic regularities of food behavior of dolphins are determined by characteristics and functionality of their acoustic signals. All the acoustic signals of dolphins are classified depending on their physical characteristics by the theory of signals and echolocation as follows: sequences of ultrashort ultrawideband coherent pulses – ‘clicks’, frequency-modulated (FM) simultones with uniformly distributed tones – ‘whistles’, packets of mutually coherent pulses (CI), packets of mutually noncoherent pulses (NI) and packets of versatile pulses (VI). They play the role of probing signals of six dolphin sonars optimized for solving various echolocation tasks. The possibilities of using the signals by dolphins in searching and classifying food objects by echolocation have been studied in this work on the basis of both experimental data obtained by the researcher and those available in literature. The dolphins can use sequences of ‘clicks’ to detect food objects (individual fish at the distance up to 70–110 m, a school of fish at the distance up to 450–600 m) and conspecifics (dolphins) (at the distance up to 450–600 m) and to classify food objects. The dolphins can use ‘whistles’ to detect food objects (individual fish at the distance up to 2 km, a school of fish at the distance up to 9–13 km) and conspecifics (dolphins) (at the distance up to 9–13 km) and to determine their range and relative radial velocity. ‘Whistles’ provide higher accuracy and the range of echolocation of food objects and conspecifics compared to ‘clicks’ (by more than an order of magnitude). Furthermore, the FM sonar provides the measure of the radial velocity of approaching or distance removing of underwater object to or from a dolphin. However, an acute analysis of the amplitude-time regularities of the fish echo for the purpose of their classification is the advantage of sonar using ‘clicks’. The dolphins can use the packs of CI at the distances shorter than 2.5 m for tracing the position dynamics of the prey aiming at accurate capture. The high hearing resolution of the dolphin in time is about 0.02 ms; it allows processing the subtle temporal dynamics of the echoes. Packs of NI (signals of spoken language) can be used by dolphins to organize various types of association and complex cooperation between themselves when hunting and catching fish. Packets of VI can be used by dolphins to expand the echolocation of the survey area around the dolphin in order to improve the quality of food objects monitoring, regardless of the position of the dolphin’s head, as well as to determine the range, relative radial velocity and class of food objects, at short distances. Evolution and perfection of various types of acoustic signals, sonars and various methods of processing echo signals in dolphins is caused, first of all, by optimization of hydroacoustic regularities of their food behavior, along with the need for orientation in three-dimensional space. One can assume the presence of similar hydroacoustic regularities of food behavior in Odontoceti based on the similarity of their acoustic signals and morphology. The acoustic regularities of food behavior of dolphins and bats are similar, despite the fact that they have different habitats (water and terrestrial-air), and these mammals belong to different orders of the animal kingdom (Сetacea and Chiroptera).

Article Details

Keywords
dolphin, bat, feeding behavior, hydroacoustics, regularities, sonar, echolocation, signal
Section
Scientific communications

References

1. Белькович В. М., Дубровский Н. А. Сенсорные основы ориентации китообразных. Ленинград : Наука, 1976. 204 с. [Belkovich V. M., Dubrovsky N. A. Sensornye osnovy orientatcii kitoobraznykh. Leningrad: Nauka, 1976, 204 p. (in Russ.)].

2. Белькович В. М., Борисов В. И. Локационное распознавание дельфинами фигур сложной конфигурации // Труды Акустического института. Москва, 1971. Т. 17. С. 19–23. [Belkovich V. M., Borisov V. I. Lokatcionnoe raspoznavanie del’finami figur slozhnoi konfiguratcii. In: Trudy Akusticheskogo instituta. Moscow, 1971, vol. 17, pp. 19–23. (in Russ.)].

3. Белькович В. М., Иванова Е. Е., Козаровицкий Л. Б., Ефременкова О. В., Харитонов С. Л. Характеристика поисково-охотничьего поведения дельфинов // Поведение дельфинов. Москва : Наука, 1978. С. 34–65. [Bel’kovich V. M., Ivanova E. E., Kozarovitskii L. B., Efremenkova O. V., Kharitonov S. L. Kharakteristika poiskovo-okhotnich’ego povedeniya del’finov. In: Povedenie del’finov. Moscow: Nauka, 1978, pp. 34–65. (in Russ.)].

4. Дубровский Н. А., Титов А. А., Краснов П. С., Бабкин В. П., Лекомцев В. М., Николенко Г. В. Исследование разрешающей способности эхолокационного аппарата черноморской афалины // Труды Акустического института. Москва, 1970. Вып. 10. С. 163–181. [Dubrovsky N. A., Titov A. A., Krasnov P. S., Babkin V. P., Lekomtcev V. M., Nikolenko G. V. Issledovanie razreshayushchei sposobnosti ekholokatcionnogo apparata chernomorskoi afaliny. In: Trudy Akusticheskogo instituta. Moscow, 1970, iss. 10, pp. 163–181. (in Russ.)].

5. Дубровский Н. А., Краснов П. С. Распознавание дельфином афалиной упругих шаров по материалу и размеру // Труды Акустического института. Москва, 1971. Вып. 17. С. 9–18. [Dubrovsky N. A., Krasnov P. S. Raspoznavanie del’finom afalinoi uprugikh sharov po materialu i razmeru. In: Trudy Akusticheskogo instituta. Moscow, 1971, iss. 17, pp. 9–18. (in Russ.)].

6. Иванов М. П. Эхолокационные сигналы дельфина при обнаружении объектов в сложных акустических условиях // Акустический журнал. 2004. Т. 50, вып. 4. С. 550–561. [Ivanov M. P. Ekholokatcionnye signaly del’fina pri obnaruzhenii ob”ektov v slozhnykh akusticheskikh usloviyakh. Akusticheskij zhurnal, 2004, vol. 50, iss. 4, pp. 550–561. (in Russ.)].

7. Морская биоакустика : монография / под ред. У. Н. Таволга ; пер. с англ. Ленинград : Судостроение, 1969. 422 с. [Morskaya bioakustika: monografiya / U. N. Tavolga (Ed.); per. s angl. Leningrad: Sudostroenie, 1969, 422 p. (in Russ.)].

8. Рябов В. А., Заславский Г. Л. Помехозащищенность эхолокатора дельфина // Сенсорные системы. 1998. Т. 12, вып. 2. С. 202–209. [Ryabov V. A. Pomekhozashchishchennost’ ekholokatora del’fina. Sensornye sistemy, 1998, vol. 12, iss. 2, pp. 202–209. (in Russ.)].

9. Рябов В. А. Спектрально-временной анализ акустических импульсных сигналов дельфином афалиной : автореф. дис. … канд. биол. наук : 03.00.02. Санкт-Петербург, 1991. 16 с. [Ryabov V. A. Spektral’no-vremennoi analiz akusticheskikh impul’snykh signalov del’finom afalinoi: avtoref. dis. ... kand. biol. nauk: 03.00.02. Sankt-Petersburg, 1991, 16 p. (in Russ.)].

10. Рябов В. А., Заславский Г. Л. Временной анализ эхосигналов афалиной // Доповіді Національної академії наук України. 1999. №. 2. С. 188–192. [Ryabov V. A., Zaslavskij G. L. Vremennoi analiz ekhosignalov afalinoi. Dopovіdі Natcіonal’noi akademіi nauk Ukraini, 1999, no. 2, pp. 188–192. (in Russ.)].

11. Урик Р. Дж. Основы гидроакустики. Ленинград : Судостроение, 1978. 448 с. [Urick R. J. Principles of underwater sound. Leningrad: Sudostroenie, 1978, 448 p. (in Russ.)].

12. Aguilar S. N., Johnson M. P., Madsen P. T., Díaz F., Domínguez I., Brito A., Tyack P. Cheetahs of the deep sea: deep foraging sprints in short-finned pilot whales off Tenerife (Canary Islands). Journal of Animal Ecology, 2008, vol. 77, iss. 5, pp. 936–943. https://doi.org/10.1111/j.1365-2656.2008.01393.x.

13. Au W. W. L. The sonar of dolphins. New York: Springer-Verlag, 1993, 277 p.

14. Au W. W. L., Branstetter B. K., Benoit-Bird K. J., Kastelein R. A. Acoustic basis for fish prey discrimination by echolocating dolphins and porpoises. The Journal of the Acoustical Society of America, 2009, vol. 126, iss. 1, pp. 460–467. https://doi.org/10.1121/1.3147497.

15. Аu W. W. L., Floyd R. G., Penner R. A., Marchison А. К. Measurement of echolocation signals of the Atlantic bottlenose dolphin, Tursiops truncatus Montagu, in open waters. The Journal of the Acoustical Society of America, 1974, vol. 56, iss. 4, pp. 1280–1290. https://doi.org/10.1121/1.1903419.

16. Au W W. L., Pawloski J. L. Cylinder wall thickness difference discrimination by an echolocating Atlantic bottlenose dolphin. Journal of Comparative Physiology A, 1992, vol. 170, iss. 1, pp. 41–47. https://doi.org/10.1007/BF00190399.

17. Au W. W. L., Snyder K. J. Long-range target detection in open waters by an echolocating Atlantic Bottlenose dolphin Tursiops truncatus. The Journal of the Acoustical Society of America, 1980, vol. 68, iss. 4, pp. 1077–1084. https://doi.org/10.1121/1.384993.

18. DeRuiter S. L., Bahr A., Blanchet M. A., Hansen S. F., Kristensen J. H., Madsen P. T., Tyack P. L., Wahlberg M. Acoustic behaviour of echolocating porpoises during prey capture. Journal of Experimental Biology, 2009, vol. 212, no. 19, pp. 3100–3107. https://doi.org/10.1242/jeb.030825.

19. Eskelinen H. C., Winship K. A., Jones B. L., Ames A. E. M., Kuczaj S. A. II. Acoustic behavior associated with cooperative task success in bottlenose dolphins (Tursiops truncatus). Animal Cognitium, 2016, vol. 19, iss. 4, pp. 789–797. https://doi.org/10.1007/s10071-016-0978-1.

20. Dubrovsky N. A., Krasnov P. S., Titov A. A. Discrimination of solid elastic spheres by an echolocating porpoise Tursiops truncatus. In: Proceedings of the 7th International Congress on Acoustics. Budapest, Hungary, 1971, vol. 3, pp. 533–536.

21. Griffin D. R., Webster F. A., Michael C. R. The echolocation of flying insects by bats. Animal Behaviour, 1960, vol. 8, iss. 3–4, pp. 141–154. https://doi.org/10.1016/0003-3472(60)90022-1.

22. Janik V. M. Source levels and the estimated active space of bottlenose dolphin (Tursiops truncatus) whistles in the Moray Firth, Scotland. Journal of Comparative Physiology A, 2000, vol. 186, iss. 7–8, pp. 673–680. https://doi.org/10.1007/s003590000120.

23. Johnson M., Madsen P. T., Zimmer W. M. X., De Soto N. A., Tyack P. L. Beaked whales echolocate on prey. Proceedings of the Royal Society B. Biological Sciences, 2004, vol. 271, suppl. 6, pp. 383–386. https://doi.org/10.1098/rsbl.2004.0208.

24. Lammers M. O., Schotten M., Au W. W. L. The spatial context of free-ranging Hawaiian spinner dolphins (Stenella longirostris) producing acoustic signals. The Journal of the Acoustical Society of America, 2006, vol. 119, iss. 2, pp. 1244–1250. https://doi.org/10.1121/1.2151804.

25. Lammers M. O., Au W. W. L., Herzing D. L. The broadband social acoustic signaling behavior of spinner and spotted dolphins. The Journal of the Acoustical Society of America, 2003, vol. 114, iss. 3, pp. 1629–1639. https://doi.org/10.1121/1.1596173.

26. Love R. H. Dorsal-aspect target strength of an individual fish. The Journal of the Acoustical Society of America, 1971, vol. 49, iss. 3B, pp. 816–823. https://doi.org/10.1121/1.1912422.

27. Madsen P. T., Surlykke A. Functional convergence in bat and toothed whale biosonars. Physiology (Bethesda), 2013, vol. 28, iss. 5, pp. 276–283. https://doi.org/10.1152/physiol.00008.2013.

28. Mayberry H. W., Faure P. A. Morphological, olfactory, and vocal development in big brown bats. Biology Open, 2015, vol. 4, no. 1, pp. 22–34. https://doi.org/10.1242/bio.201410181.

29. Morozov V. P., Akopian A. I., Burdin V. I., Zaitseva K. A. Sokovykh I. A. Sequential frequency of location signals of dolphins as a function of distance from the target. Biofizika, 1972, vol. 17, no. 1, pp. 139–145. (in Russ.).

30. Miller L. A., Pristed J., Møhl B., Surlykke A. The click sounds of narwhals (Monodon monoceros) in Inglefield Bay, Northwest Greenland. Marine Mammal Science, 1995, vol. 11, iss. 4, pp. 491–502. https://doi.org/10.1111/j.1748-7692.1995.tb00672.x.

31. Miller P. J. O., Johnson M. P., Tyack P. L. Sperm whale behavior indicates the use of echolocation click buzzes ‘creaks’ in prey capture. Proceedings of the Royal Society B. Biological Sciences, 2004, vol. 271, iss. 1554, pp. 2239–2247. https://doi.org/10.1098/rspb.2004.2863.

32. Murchison A. E. Detection range and range resolution in echolocating bottlenose porpoise (Tursiops truncatus). In: Animal Sonar Systems / R. G. Busnel, J. F. Fish (Eds). New York: Plenum Press, 1980, pp. 43–70.

33. Richardson W. J., Greene C. R., Malme C. I., Thomson D. H. Marine Mammals and Noise. San Diego: Academic Press, 1995, 576 p.

34. Rasmussen M. H., Lammers M. O., Beedholm K., Miller L. A. Source levels and harmonic content of whistles in white-beaked dolphins (Lagenorhynchus albirostris). The Journal of the Acoustical Society of America, 2006, vol. 120, iss. 1, pp. 510–517. https://doi.org/10.1121/1.2202865.

35. Ridgway S. H., Moore P. W., Carder D. A., Romano T. A. Forward shift of feeding buzz components of dolphins and belugas during associative learning reveals a likely connection to reward expectation, pleasure and brain dopamine activation. Journal of Experimental Biology, 2014, vol. 217, iss. 16, pp. 2910–2919. https://doi.org/10.1242/jeb.100511.

36. Ryabov V. A. Some aspects of analysis of dolphins’ acoustical signals. Open Journal of Acoustics, 2011, vol. 1, pp. 41–54. https://doi.org/10.4236/oja.2011.12006.

37. Ryabov V. A. Acoustic signals and echolocation system of the dolphin. Biophysics, 2014, vol. 59, iss. 1, pp. 135–147. https://doi.org/10.1134/S0006350914010199.

38. Ryabov V. A. The study of acoustic signals and the supposed spoken language of the dolphins. St. Petersburg Polytechnical University Journal: Physics and Mathematics, 2016, vol. 2, iss. 3, pp. 231–239. https://doi.org/10.1016/j.spjpm.2016.08.004.

39. Wisniewska D. M., Johnson M., Nachtigall P. E., Madsen P. T. Buzzing during biosonar-based interception of prey in the delphinids Tursiops truncatus and Pseudorca crassidens. Journal of Experimental Biology, 2014, vol. 217, iss. 24, pp. 4279–4282. https://doi.org/10.1242/jeb.113415.

40. Wisniewska D. M., Johnson M., Beedholm K., Wahlberg M., Madsen P. T. Acoustic gaze adjustments during active target selection in echolocating porpoises. Journal of Experimental Biology, 2012, vol. 215, iss. 24, pp. 4358–4373. https://doi.org/10.1242/jeb.074013.

41. Yovel Y., Au W. W. L. How can dolphins recognize fish according to their echoes? A statistical analysis of fish echoes. PLoS ONE, 2010, vol. 5, no. 11, e14054. https://doi.org/10.1371/journal.pone.0014054.

42. Zaslavsky G. L., Ryabov V. A. Target classification in the dolphin. In: ACOUSTICS 2011: A New Decade – A New Reality: Rethinking Acoustic Practices for the Austerity Decade: Proceedings of a meeting, 14–15 September 2011, Glasgow, Scotland, UK / Institute of Acoustics, 2001, vol. 23, pt 4, pp. 75–78.

43. Zaslavskiy G. L. The auditory time resolution in bottlenose dolphin: behavioural experiments versus auditory evoked potential methods. In: Proceedings of the 9th European Conference on Underwater Acoustics. France, Paris, 2008, pp. 571–576. http://webistem.com/acoustics2008/acoustics2008/cd1/data/articles/000101.pdf.